找回密码
 注册
查看: 1231|回复: 0

R语言 affy包 normalize.qspline()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 11:28:46 | 显示全部楼层 |阅读模式
normalize.qspline(affy)
normalize.qspline()所属R语言包:affy

                                        Normalize arrays
                                         标准化阵列

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

normalizes arrays in an AffyBatch each other or to a set of target intensities
在一个AffyBatch对方或一套目标强度标准化阵列


用法----------Usage----------


normalize.AffyBatch.qspline(abatch,type=c("together", "pmonly", "mmonly",
                 "separate"), ...)

normalize.qspline(x, target = NULL, samples = NULL,
                  fit.iters = 5, min.offset = 5,
                  spline.method = "natural", smooth = TRUE,
                  spar = 0, p.min = 0, p.max = 1.0,
                  incl.ends = TRUE, converge = FALSE,
                  verbose = TRUE, na.rm = FALSE)



参数----------Arguments----------

参数:x
a data.matrix of intensities
data.matrix强度


参数:abatch
an AffyBatch
AffyBatch


参数:target
numerical vector of intensity values to normalize to. (could be the name for one of the celfiles in 'abatch').
强度值的数值向量标准化。 (可能为一体的在abatch“celfiles的名称)。


参数:samples
numerical, the number of quantiles to be used for spline. if (0,1], then it is a sampling rate.
数值,样条位数的号码。如果(0,1],那么它是一个采样率。


参数:fit.iters
number of spline interpolations to average.
样条插值的平均数量。


参数:min.offset
minimum span between quantiles (rank difference) for the different fit iterations.
适合不同迭代位数(排名差异)之间的最小跨度。


参数:spline.method
specifies the type of spline to be used. Possible values are  ""fmm"", ""natural"", and ""periodic"".
指定要使用花键的类型。可能的值是“FMM”,“自然”“,”定期“。


参数:smooth
logical, if "TRUE", smoothing splines are used on the quantiles.
逻辑,如果“TRUE”,平滑样条上使用的位数。


参数:spar
smoothing parameter for "splinefun", typically in (0,1].
平滑参数splinefun,通常在(0,1]。


参数:p.min
minimum percentile for the first quantile.
第一位数的最低百分。


参数:p.max
maximum percentile for the last quantile.
最后位数的最大百分。


参数:incl.ends
include the minimum and maximum values from the normalized and target arrays in the fit.
包括在适当的规范化和目标阵列的最大值和最小值。


参数:converge
(currently unimplemented)
(目前还没有实现)


参数:verbose
logical, if "TRUE" then normalization progress is reported.
逻辑,如果“TRUE”标准化的进展报告。


参数:na.rm
logical, if "TRUE" then handle NA values (by ignoring them).
逻辑,如果“TRUE”,然后处理不适用值(忽略)。


参数:type
a string specifying how the normalization should be applied. See details for more.
一个字符串,指定应如何标准化。看到更多的细节。


参数:...
optional parameters to be passed through.
可选参数,可以通过。


Details

详情----------Details----------

This normalization method uses the quantiles from each array and the  target to fit a system of cubic splines to normalize the data. The  target should be the mean (geometric) or median of each probe but could  also be the name of a particular chip in the abatch object.
这标准化的方法是使用每个阵列和目标,以适应系统的三次样条标准化数据的位数。我们的目标应该是平均(几何)或中位数每个探针,但也可能是一个特定芯片在abatch对象的名称。

Parameters setting can be of much importance when using this method. The parameter fit.iter is used as a starting point to find a more appropriate value. Unfortunately the algorithm used do not converge in some cases. If this happens, the fit.iter value is used and a warning is thrown. Use of different settings for the parameter samples was reported to give good results. More specifically, for about 200   data points use samples = 0.33, for about 2000  data points use samples = 0.05, for about 10000 data points use samples = 0.02 (thanks to Paul Boutros).
使用此方法时,参数的设置,可以是非常重视。参数fit.iter作为出发点,以找到一个更合适的值。不幸的是,所使用的算法在某些情况下不收敛。如果发生这种情况,fit.iter值被使用,则抛出一个警告。使用不同的设置参数samples据报道,给予了良好的效果。更具体地说,使用约200个数据点samples = 0.33,约2000个数据点使用samples = 0.05,约10000个数据点使用samples = 0.02(感谢保罗·布特罗斯)。

The type argument should be one of "separate","pmonly","mmonly","together" which indicates whether to normalize only one probe type (PM,MM) or both together or separately.
type参数应该是一个"separate","pmonly","mmonly","together"这表明是否只有一个探针类型(PM,MM)或一起或单独标准化。


值----------Value----------

a normalized AffyBatch.
归一AffyBatch。


作者(S)----------Author(s)----------



Laurent and Workman C.




参考文献----------References----------

Laurent Gautier, Henrik Bjorn Nielsen, Hans-Henrik Saxild, Claus Nielsen, Soren Brunak, and Steen Knudsen. A new non-linear normal- ization method for reducing variability in dna microarray experiments. Genome Biology, accepted, 2002
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-23 06:14 , Processed in 0.037644 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表