propdiff.mblmodwoc(SampleSizeProportions)
propdiff.mblmodwoc()所属R语言包:SampleSizeProportions
Bayesian sample size determination for the difference between two binomial proportions using the Mixed Bayesian/Likelihood Modified Worst Outcome Criterion
贝叶斯样本数的两个二项式比例之间的差异,使用混合贝叶斯/似然准则修改最坏的结果
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The function propdiff.mblmodwoc uses a mixed Bayesian/likelihood approach to determine conservative sample sizes for the difference between two binomial proportions, in the sense that the desired posterior credible interval coverage and length are guaranteed
函数propdiff.mblmodwoc使用的混合贝叶斯/可能性保守的样本量的方法来确定两个二项式比例之间的差异,在这个意义上,所需的后路可信区间的覆盖范围和长度,保证
用法----------Usage----------
propdiff.mblmodwoc(len, c1, d1, c2, d2, level = 0.95, worst.level = 0.95)
参数----------Arguments----------
参数:len
The desired total length of the posterior credible interval for the difference between the two unknown proportions
后的置信区间的两个未知的比例之间的差异所需的总长度
参数:c1
First prior parameter of the Beta density for the binomial proportion for the first population
第一先验参数的Beta密度为二项式第一人口比例
参数:d1
Second prior parameter of the Beta density for the binomial proportion for the first population
二之前的Beta密度参数的二项式第一人口比例
参数:c2
First prior parameter of the Beta density for the binomial proportion for the second population
首先之前的Beta密度参数的二项式第二人口比例
参数:d2
Second prior parameter of the Beta density for the binomial proportion for the second population
二之前的Beta密度参数的二项式第二人口比例
参数:level
The fixed coverage probability of the posterior credible interval (e.g., 0.95)
固定覆盖概率后验可信区间(如0.95)
参数:worst.level
The probability that the length of the posterior credible interval of fixed coverage probability level will be at most len
固定覆盖概率水平后置信区间的长度的概率将至多len
Details
详细信息----------Details----------
Assume that a sample from each of two populations will be collected in order to estimate the difference between two independent binomial proportions. Assume that the proportions have prior information in the form of Beta(c1, d1) and Beta(c2, d2) densities in each population, respectively. The function propdiff.mblmodwoc returns the required sample sizes to attain the desired length len for the posterior credible interval of fixed coverage probability level for the difference between the two unknown proportions. The Modified Worst Outcome Criterion used is conservative, in the sense that the posterior credible interval length len is guaranteed over the worst.level proportion of all possible data sets that can arise according to the prior information, for a fixed coverage probability level. <br><br> This function uses a Mixed Bayesian/Likelihood (MBL) approach. MBL approaches use the prior information to derive the predictive distribution of the data, but uses only the likelihood function for final inferences. This approach is intended to satisfy investigators who recognize that prior information is important for planning purposes but prefer to base final
假设为了估计之间的差,两个独立的二项式比例,将被收集在一个样品从每两个种群。假设的比例有先验信息的形式的测试(C1,D1)和β(C2,D2)在每个人口密度,分别。函数propdiff.mblmodwoc返回所需的样本量,以达到所需的长度len后的置信区间的固定覆盖概率水平之间的差异两名身份不明的比例。修改最坏的结果是保守的标准,在这个意义上,后的置信区间的长度len保证在所有可能的数据集,可能会出现根据先验信息的worst.level比例,一个固定的覆盖概率水平。参考该函数使用一个混合的贝叶斯/似然方法(MBL)。 MBL方法使用的先验信息,得出的预测分布的数据,但只使用了似然函数为最终推断。这种方法是为了满足研究人员承认,之前的信息,规划的目的是重要的,但更喜欢基础最终
值----------Value----------
The required sample sizes (n1, n2) for each group given the inputs to the function.
各组所需的样本量(N1,N2)输入的功能。
注意----------Note----------
The sample sizes returned by this function are exact.
这个函数返回的样本大小是准确的。
(作者)----------Author(s)----------
Lawrence Joseph <a href="mailto:lawrence.joseph@mcgill.ca">lawrence.joseph@mcgill.ca</a>, Patrick Belisle and Roxane du Berger
参考文献----------References----------
Bayesian and mixed Bayesian/likelihood criteria for sample size determination<br>
参见----------See Also----------
propdiff.mblacc, propdiff.mblalc, propdiff.mblwoc, propdiff.acc, propdiff.alc, propdiff.modwoc, propdiff.woc
propdiff.mblacc,propdiff.mblalc,propdiff.mblwoc,propdiff.acc,propdiff.alc,propdiff.modwoc,propdiff.woc
实例----------Examples----------
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|