找回密码
 注册
查看: 316|回复: 0

R语言 sac包 SemiparChangePoint()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-29 21:24:01 | 显示全部楼层 |阅读模式
SemiparChangePoint(sac)
SemiparChangePoint()所属R语言包:sac

                                        Semiparametric Test of Change-point(s) with One-change or Epidemic Alternative
                                         变化或流行另类的半参数变点测试(S)

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Calculate test statistics, loglikelihood function and estimate unknown parameters in the semiparametric model.
计算检验统计量,loglikelihood功能和半参数模型的估计未知参数。


用法----------Usage----------


SemiparChangePoint(x, alternative = c("one.change", "epidemic"),
    adj.Wn = FALSE, tol = 1e-07, maxit = 50, trace = FALSE, ...)



参数----------Arguments----------

参数:x
a numeric vector or matrix containing the data, one row per observation;
包含的数据,每一个行观察的一个数值向量或矩阵;


参数:alternative
a character string specifying the alternative hypothesis, must be one of "one-change" (default) or "epidemic".  You can specify just the initial letter.
一个字符串,指定其他假设,必须是之一"one-change"(默认)或"epidemic"。您可以只指定的首字母。


参数:tol
the desired accuracy (convergence tolerance), an argument of glm.control.
所需的精度(收敛公差)的参数glm.control。


参数:adj.Wn
logical indicating if Wn should be adjusted or not for "epidemic" alternative.
逻辑表明,如果Wn应调整或不"epidemic"替代。


参数:maxit
the maximum number of iterations, an argument of glm.control.
最大的迭代次数的参数glm.control。


参数:trace
logical indicating if output should be produced for each iteration, an argument of glm.control.
逻辑表明,如果输出应为每次迭代中,一个参数的glm.control。


参数:...
other future arguments
未来其他参数


Details

详细信息----------Details----------

Model: log{ g(x)/f(x)}=exp{alpha+beta'T(x)} ,  where f(x) and g(x) are the density (frequency) functions of the two hypothesized populations, and T(x) can be chosen as T(x)=x or T(x)=(x,x^2).  The procedure will fail when there is separation in the data in the sense of Albert \& Anderson(1984, Biometrika) and Santner \& Duffy (1986, Biometrika). In this case, the change-point(s) may be detected easily using nonparametric method based on cumsum. Currently, this function does not check whether the data is separated.
型号:log{ g(x)/f(x)}=exp{alpha+beta'T(x)},其中f(x)和g(x)是两个假设人口密度(频率)功能,和T(x)可以选择T(x)=x或 T(x)=(x,x^2)。伟业在这个意义上的数据时有分离的过程将失败\&安德森(1984年,生物统计),Santner \&达菲(1986年,生物统计)。在这种情况下,变化点(s)可以被容易地检测到基于cumsum使用非参数方法。目前,这个函数不检查数据是否被分离。


值----------Value----------

<table summary="R valueblock"> <tr valign="top"><td>k.hat </td> <td> change-point estimate</td></tr> <tr valign="top"><td>m.hat </td> <td> second change-point estimate for "epidemic" alternative</td></tr> <tr valign="top"><td>ll </td> <td> loglikelihood function</td></tr> <tr valign="top"><td>Sn </td> <td> likelihood ratio test statistic for "one-change" alternative</td></tr> <tr valign="top"><td>Vn </td> <td> test statistic based integal of weighted likelihood ratio for "epidemic" alternative</td></tr> <tr valign="top"><td>Wn </td> <td> test statistic based supremum of weighted likelihood ratio for "epidemic" alternative</td></tr> <tr valign="top"><td>alpha.hat </td> <td> estimate of alpha</td></tr> <tr valign="top"><td>beta.hat </td> <td> estimate of beta</td></tr> </table>
<table summary="R valueblock"> <tr valign="top"> <TD> k.hat  </ TD> <TD>变点估计</ TD> </ TR> <TR VALIGN =“顶部“> <TD> m.hat  </ TD> <TD>第二个变点估计的"epidemic"另类</ TD> </ TR> <tr valign="top"> <TD> X> </ TD> <TD> loglikelihood功能</ TD> </ TR> <tr valign="top"> <TD>ll  </ TD> <TD>似然比检验统计量为Sn 另类</ TD> </ TR> <tr valign="top"> <TD>"one-change" </ TD> <TD>加权似然比检验统计量的固有领土为Vn 替代</ TD> </ TR> <tr valign="top"> <TD> "epidemic" </ TD> <TD>检验统计量的基础上确界的加权似然比Wn 另类</ TD> </ TR> <tr valign="top"> <TD> "epidemic" </ TD> <TD>估计alpha.hat </ TD> </ TR> <tr valign="top"> <TD> alpha </ TD> <TD>估计beta.hat </ TD> </ TR> </ TABLE>


注意----------Note----------

Statistic Wn need be adjusted only for one dimensional observations
统计Wn需要进行调整仅适用于一维的观察


(作者)----------Author(s)----------


Zhong Guan <a href="mailto:zguan@iusb.edu">zguan@iusb.edu</a>



参考文献----------References----------

Guan, Z.(2001) Some Results About Empirical Likelihood Method, Ph.D. Thesis, The University of Toledo.
Guan, Z.(2004) A semiparametric change-point model, Biometrika, 91, 4, 849&ndash;862.
Guan, Z. Semiparametric Tests for Change-points with Epidemic Alternatives.

参见----------See Also----------

schapt, p.OneChange, p.Epidemic.Vn,
schapt,p.OneChange,p.Epidemic.Vn,


实例----------Examples----------


require(sac) #load the package[加载包]
# one-change alternative[变化的替代]
k<-10
n<-30
x<-rnorm(n,0,1)
x[(k+1):n]<-x[(k+1):n]+1.5
SemiparChangePoint(x, alternative = "one.change")

# epidemic alternative[流行另类]
k<-5
m<-10
n<-20
x<-rnorm(n,0,1)
x[(k+1):m]<-x[(k+1):m]+1.5
SemiparChangePoint(x,  alternative = "epidemic")

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-29 02:40 , Processed in 0.020187 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表