select.sig.gene(AffyExpress)
select.sig.gene()所属R语言包:AffyExpress
select differentially expressed genes based on p value and/or fold change
选择p值和/或倍数变化的差异表达基因
译者:生物统计家园网 机器人LoveR
描述----------Description----------
select differentially expressed genes based on p value and/or fold change
选择p值和/或倍数变化的差异表达基因
用法----------Usage----------
select.sig.gene(top.table, p.value =0.05, m.value =0)
参数----------Arguments----------
参数:top.table
an data frame returned from the regress function
从回归函数返回一个数据框
参数:p.value
p value, the default value is 0.05
p值,默认值是0.05
参数:m.value
fold change cut-off value, default value is 0
倍cut-off值,默认值是0
值----------Value----------
A dataframe which is the similar to the one returned from regress function. An additional column 'significant' is added to the table from the "regress" function. If p value < p.value and absolute of fold change value >=m.value then signiicant = TRUE, otherwise, significant = FALSE.
一个dataframe这是从回归函数返回一个类似。从“回归”的功能,一个额外的列显着被添加到表。如果p值<p.value和绝对的fold change值> = m.value然后signiicant = TRUE,否则,显着为FALSE。
作者(S)----------Author(s)----------
Xiwei Wu <a href="mailto:xwu@coh.org">xwu@coh.org</a>, Xuejun Arthur Li <a href="mailto:xueli@coh.org">xueli@coh.org</a>
举例----------Examples----------
data(testData)
normaldata<-pre.process("rma",testData)
## Create design matrix[#创建设计矩阵]
design<-make.design(pData(normaldata), "group")
## Create contrast matrix - Compare group "A" vs. "C"[#创建对比矩阵 - 比较组“A”与“C”的]
contrast<-make.contrast(design, "A", "C")
## Identify differentially expressed gene by using LIMMA method[#确定使用LIMMA方法的差异表达基因]
result<-regress(normaldata, design, contrast, "L")
## Select differentially expressed gene based on p <0.05 and [#选择差异表达基因在p <0.05]
## fold change >=log2(1.5)[#> =为log2(1.5倍)]
select<-select.sig.gene(result, p.value=0.05, m.value=log2(1.5))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|