uGARCHsim-class(rugarch)
uGARCHsim-class()所属R语言包:rugarch
class: Univariate GARCH Simulation Class
类别:单变量GARCH模拟类
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Class for the univariate GARCH simulation.
单变量GARCH模拟类。
扩展----------Extends----------
Class "GARCHsim", directly. Class "rGARCH", by class "GARCHsim", distance 2.
类"GARCHsim",直接。类"rGARCH",类的“GARCHsim”,距离2。
插槽----------Slots----------
simulation: Object of class "vector"
simulation:对象类"vector"的
model: Object of class "vector"
model:对象类"vector"的
seed: Object of class "integer"
seed:对象类"integer"的
方法----------Methods----------
as.data.frame signature(x = "uGARCHsim"):
as.data.framesignature(x = "uGARCHsim"):
plot signature(x = "uGARCHsim", y = "missing"):
图signature(x = "uGARCHsim", y = "missing"):
show signature(object = "uGARCHsim"):
显示signature(object = "uGARCHsim"):
注意----------Note----------
The as.data.frame function takes optionally 1 additional arguments, namely which, indicating the type of simulation series to extract. Valid values are “sigma” for the simulated sigma, “series” for the simulated series and “residuals” for the simulated residuals. The dimension of the data.frame will be n.sim by m.sim.
任选1 as.data.frame功能需要额外的参数,即which,表明仿真系列中提取的类型。有效值的模拟西格玛“西格玛”,“系列”模拟系列和“残差”的模拟残留物。 data.frame的尺寸是n.simm.sim。
(作者)----------Author(s)----------
Alexios Ghalanos
参见----------See Also----------
Classes uGARCHforecast, uGARCHfit and uGARCHspec.
类uGARCHforecast,uGARCHfit和uGARCHspec。
实例----------Examples----------
## Not run: [#不运行:]
# Basic GARCH(1,1) Spec[基本GARCH(1,1)规格]
data(dmbp)
spec = ugarchspec()
fit = ugarchfit(data = dmbp[,1], spec = spec)
sim = ugarchsim(fit,n.sim=1000, n.start=1, m.sim=1, startMethod="sample")
sim
# plot(sim, which="all")[图(SIM =“所有”)]
# as.data.frame takes an extra argument which[as.data.frame需要一个额外的参数]
# indicating one of "sigma", "series" and "residuals"[表示的“西格玛”,“系列”和“残差”]
head(as.data.frame(sim, which = "sigma"))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|