AffyInteraction(AffyExpress)
AffyInteraction()所属R语言包:AffyExpress
Analyze interaction effect and produce output
分析相互作用的影响,并产生输出
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This wrapper function will create a design matrix and contrast matrix for the interaction test. Then it will fit linear model to test for interaction effect for each gene and identify genes for which interaction test is being significant. For genes having the interaction effect, it fits linear model for each genes in each level of strata.var. For genes don't have interaction effect, it fits linear model for each genes without stratifying the strata.var. In the end, it will output signficant result.
此包装函数将创建一个设计的互动测试和对比矩阵的矩阵。然后,将适合的互动效应,为每个基因测试,并确定基因互动测试是重大的线性模型。对于有交互影响的基因,它适合在每strata.var水平为每个基因的线性模型。基因不具有交互效果,它适合不分层的strata.var每个基因的线性模型。最后,它会输出signficant结果。
用法----------Usage----------
AffyInteraction(object, method, main.var, strata.var, compare1, compare2,
covariates=NULL, p.int=0.05, m.int=0, adj.int="none", p.value=0.05,
m.value=0, adj="none", filename1="result", filename2="inter_result")
参数----------Arguments----------
参数:object
an "ExpressionSet"
“ExpressionSet”
参数:method
Three methods are supported by this function: "L" for using LIMMA method - compute moderated t-statistics and log-odds of differential expression by empirical Bayes shrinkage of the standard errors towards a common value; "F" for using ordinary linear regression; "P" for permuation test by resampling the phenotype
三种方法都支持这个功能:“L”的使用LIMMA方法 - 计算朝着一个共同的价值标准错误的经验Bayes收缩放缓t-统计量和差异表达的log赔率的“F”,使用普通的线性回归;“P”字为重采样的表型permuation测试
参数:main.var
the variable of your main interest
你的主要兴趣变量
参数:strata.var
a categorical variable serves as a potential effect modifier. An effect modifier is a variable that modifies the association between outcome variable and the main variable. If the interaction exits, the association between the outcome and main.var will be analyzed separately within each stratum of strata.var
分类变量作为一个潜在的影响修饰符。效果修饰是一个变量,修改的结果变量和主要变量之间的关联。如果退出的相互作用,将分别进行分析的结果和main.var之间的关联各阶层strata.var内
参数:compare1
first value of the variable of main interest. Suppose the main variable is "estrogen", and its has two values: "present" and "absent". You would like to compare "present" versus "absent". Then you will use compare1 = "present"
第一个值的变量的主要兴趣。假设的主要变量是“雌激素”,它有两个值:“现在”和“缺席”。你想比较“礼物”与“缺席”。然后你会使用比较1 =“目前”
参数:compare2
second value of the variable of main interest. Follow from the same example above, you will set compare2 = "absent"
第二个值的变量的主要兴趣。按照上述同样的例子,您将设置捕捉=“缺席”
参数:covariates
a list of covariates, not including main.var and strata.var, the default value is NULL
一个协变量列表,不包括main.var和strata.var,默认值是NULL
参数:p.int
p value for the interaction test
p值的交互测试
参数:m.int
fold change cut-off value for the interaction test
截止倍价值的互动测试
参数:adj.int
adjustment method for multiple comparison for testing interaction, including "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". Type help(p.adjust) for more detail.
测试互动比较多,包括“冬青”,“hochberg”,“HOMMEL”,“邦弗朗尼”,“波黑”,“”,“FDR”,“无”的调整方法。键入help(p.adjust)的更多细节。
参数:p.value
p value for main effect test
p值的主要影响测试
参数:m.value
fold change cut-off value for main effect test
截止倍价值的主要影响测试
参数:adj
adjustment method for multiple comparison for testing main effect
调整方法为多个比较测试的主要作用
参数:filename1
name of the output file for the main effect
主要作用的输出文件的名称
参数:filename2
name of the output file for the interaction test
输出文件的名称为交互测试
值----------Value----------
a list of data frame: The first data frame contains results for genes with interaction effect. The second data frame contains results for genes don't have interaction effect. The rest of the data frames contain information for main effects for each stratum of strata.var.
第一个数据框一帧数据的列表:包含的基因互作效应的结果。第二个数据框包含的基因没有互动效应的结果。其余的数据框包含的主效应每个阶层strata.var的信息。
作者(S)----------Author(s)----------
Xiwei Wu <a href="mailto:xwu@coh.org">xwu@coh.org</a>, Xuejun Arthur Li <a href="mailto:xueli@coh.org">xueli@coh.org</a>
举例----------Examples----------
## Suppose that you would like to test the interaction effect between "gender" [#假设你想测试“性别”之间的互动效应]
## and "group" variables, "gender" is the main effect variable. For genes in [#和“组”变量,“性别”是主要的影响变量。有关的基因]
## which the interaction test are being significant, you would like to compare [#交互测试是显着的,你想比较]
## "M" vs. "F" within each level of "group". For genes in which the interaction [#的“M”与“F”的每个“组”的水平内。对于基因在其中的互动]
## test are not being significant, you would like to compare "M" vs. "F" without [#测试不显着,你想比较的“M”与“F”的无]
## stratifying "group".[#分层“组”。]
data(testData)
normaldata<-pre.process("rma",testData)
result<-AffyInteraction(normaldata, "L", "gender", "group","M", "F", p.int=0.05,
m.int=0, adj.int="none", p.value=0.05, m.value=0, adj="none",
filename1="result1", filename2="result2")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|