output.sites(rtfbs)
output.sites()所属R语言包:rtfbs
Threshold possible binding sites by Score or FDR
阈值的可能结合位点的分数或FDR
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Threshold the possible binding sites based on score, or False Discovery Rate (FDR). To threshold on FDR, you must have computed an FDR/Score map using calc.fdr, and chosen an FDR threshold, for which makeFdrPlot() is helpful.
阈值的可能结合位点得分,或错误发现率(FDR)的基础上。 FDR阈值,则必须计算的FDR /的分数图使用calc.fdr,并选择FDR阈值,这makeFdrPlot()是有帮助的。
用法----------Usage----------
output.sites(seqsScores, scoreThreshold = NULL,
fdrScoreMap = NULL, fdrThreshold = NULL)
参数----------Arguments----------
参数:seqsScores
score.ms output representing scores for candidate binding sites
score.ms输出代表候选人的结合位点的分数
参数:scoreThreshold
A numeric value giving the lower score boundary significance threshold. Sequences with scores higher than this boundary will be selected. (Not required if thresholding by FDR.)
的得分越低,边界的意义阈值的数值。序列的得分较高,超过这个边界将被选中。 (不要求如果阈值由FDR)。
参数:fdrScoreMap
calc.fdr output giving mapping between score/FDR (only required if thresholding by FDR).
calc.fdr输出之间的映射得分/ FDR(如果阈值,只需要通过FDR)。
参数:fdrThreshold
A numeric value between 0 and 1 giving upper FDR boundary- any site with a lower FDR score will be output. (only required if thresholding by FDR)
将输出的数值介于0和1之间,给上FDR FDR得分较低的边界任何网站。 (由FDR阈值时才需要)
值----------Value----------
Features object containing thresholded Transcription Factor Binding Sites, their locations, scores, strand, etc. If thresholding by score, this is equivalent to seqsScores[seqsScores$score > scoreThreshold,].
对象特点的阈值转录因子结合位点,它们的位置,分数,钢绞线等,如果阈值的得分,这是相当于seqsScores[seqsScores$score > scoreThreshold,]。
实例----------Examples----------
require("rtfbs")
exampleArchive <- system.file("extdata", "NRSF.zip", package="rtfbs")
seqFile <- "input.fas"
unzip(exampleArchive, seqFile)
# Read in FASTA file "input.fas" from the examples into an [阅读在FASTA的文件“input.fas”中的例子成]
# MS (multiple sequences) object[多个序列(MS)对象]
ms <- read.ms(seqFile);
pwmFile <- "pwm.meme"
unzip(exampleArchive, pwmFile)
# Read in Position Weight Matrix (PWM) from MEME file from[阅读中的位置权重矩阵(PWM)MEME文件]
# the examples into a Matrix object[到Matrix对象的例子]
pwm <- read.pwm(pwmFile)
# Build a 3rd order Markov Model to represent the sequences[建立一个3阶Markov模型来表示序列]
# in the MS object "ms". The Model will be a list of[在MS对象“MS”。该模型将一个列表]
# matrices corrisponding in size to the order of the [矩阵的大小的顺序corrisponding]
# Markov Model[马尔可夫模型]
mm <- build.mm(ms, 3);
# Match the PWM against the sequences provided to find[对找到的序列匹配PWM]
# possible transcription factor binding sites. A [可能的转录因子结合位点。一]
# Features object is returned, containing the location[返回对象特点的,包含位置]
# of each possible binding site and an associated score.[每个可能的结合位点和一个相关的得分。]
# Sites with a negative score are not returned unless [除非网站不会返回一个负的成绩]
# we set threshold=-Inf as a parameter.[我们作为一个参数设置的阈值=-INF。]
cs <- score.ms(ms, pwm, mm)
# Generate a sequence 1000 bases long using the supplied[术语使用提供的1000个碱基生成一个序列]
# Markov Model and random numbers[马尔可夫模型和随机数]
v <- simulate.ms(mm, 10000)
# Match the PWM against the sequences provided to find[对找到的序列匹配PWM]
# possible transcription factor binding sites. A [可能的转录因子结合位点。一]
# Features object is returned, containing the location[返回对象特点的,包含位置]
# of each possible binding site and an associated score.[每个可能的结合位点和一个相关的得分。]
# Sites with a negative score are not returned unless [除非网站不会返回一个负的成绩]
# we set threshold=-Inf as a parameter. Any identified[我们作为一个参数设置的阈值=-INF。任何确定的]
# binding sites from simulated data are false positives[从模拟数据的结合位点是误报]
# and used to calculate False Discovery Rate[并用于计算假发现率]
xs <- score.ms(v, pwm, mm)
# Calculate the False Discovery Rate for each possible[每一个可能的假发现率计算]
# binding site in the Features object CS. Return[结合位点的特点反对CS。返回]
# a mapping between each binding site score and the[每个结合位点的得分和之间的映射]
# associated FDR.[相关的FDR。]
fdr <- calc.fdr(ms, cs, v, xs)
# Output identified transcription factor binding sites [输出确定了转录因子结合位点]
# below a 0.5 FDR threshold[低于0.5 FDR阈值]
output.sites(cs, NULL, fdr, 0.5)
# OR[或]
# Output identified transcription factor binding sites[输出确定了转录因子结合位点]
# above a 5.2 score threshold [超过了5.2的分数阈值]
output.sites(cs, 5.2)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|