找回密码
 注册
查看: 1354|回复: 0

R语言 RSNNS包 RSNNS-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-28 22:08:44 | 显示全部楼层 |阅读模式
RSNNS-package(RSNNS)
RSNNS-package()所属R语言包:RSNNS

                                        Getting started with the RSNNS package
                                         入门的RSNNS包

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The Stuttgart Neural Network Simulator (SNNS) is a library containing many  standard implementations of neural networks. This package wraps the SNNS
斯图加特神经网络的模拟器(SNNS)是一个库,包含了许多标准的神经网络实现。这个包包装SNNS


Details

详细信息----------Details----------

If you have problems using RSNNS, find a bug, or have suggestions, please contact the package maintainer by email, instead of writing to the general R lists or contacting the  authors of the original SNNS software.
如果你有问题,使用RSNNS,发现了一个bug,或有任何建议,请联系通过电子邮件软件包的维护者,而不是写一般的R里面,列表或联系作者原SNNS软件。

If you use the package, please cite the following work in your publications:
如果您使用的包,请在出版物中引用了以下工作:

Bergmeir, C. and Ben铆tez, J.M. (2012), Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS. Journal of Statistical Software, 46(7), 1-26. http://www.jstatsoft.org/v46/i07/
Bergmeir,C.和贝尼特斯,JM(2012年),用神经网络在斯图加特的神经网络仿真器:RSNNS。 [统计软件,46(7),1-26。 http://www.jstatsoft.org/v46/i07/~~V

The package has a hierarchical architecture with three levels:
包有一个分层架构的三个层次:

RSNNS high-level api (rsnns)
RSNNS高层次的API(rsnns)

RSNNS low-level api (SnnsR)
RSNNS低级别的API(SnnsR)

The api of our C++ port of SNNS (SnnsCLib)
的API,C + +,端口SNNS(SnnsCLib)

Many demos for using both low-level and high-level api of the package are available. To get a list of them, type:
许多演示同时使用低层次和高层次的API的包。为了得到它们的列表,键入:

library(RSNNS)
library(RSNNS)

demo()
demo()

It is a good idea to start with the demos of the high-level api (which is much more convenient to use). E.g., to access the iris classification demo type:
这是一个好主意,开始与高层次的API(这是更方便地使用)演示。例如,要访问的虹膜分类演示类型:

demo(iris)
demo(iris)

or for the laser regression demo type:
或激光回归演示类型:

demo(laser)
demo(laser)

As the high-level api is already quite powerful and flexible, you'll most probably normally end up using one of the functions: mlp, dlvq, rbf, rbfDDA, elman,  jordan, som, art1, art2, artmap, or assoz, with some pre- and postprocessing. These S3 classes are all subclasses of rsnns.
作为高层次的API已经是相当强大的,灵活的,你很可能会结束了使用的功能之一:mlp,dlvq,rbf,rbfDDA elman,jordan,som,art1,art2,artmap或assoz,与一些预处理和后处理。这些S3类的所有子类rsnns。

You might also want to have a look at the original SNNS program and the SNNS User Manual 4.2, especially pp 67-87 for explications on all the parameters of the learning functions, and pp 145-215 for detailed (theoretical) explications of the methods and advice on their use.
您可能也想看看在原SNNS方案的SNNS用户手册4.2,特别是PP 67-87王希恩的学习功能,所有参数和pp 145-215详细(理论)王希恩的方法其使用和建议。

Demos ending with "SnnsR" show the use of the low-level api. If you want to do special things with neural networks that are currently not implemented in the high-level api, you can see in this demos how to do it. Many demos are present both as high-level and low-level versions.
演示结束与“SnnsR”的显示使用低级别的API。如果你想做些特别的事情的神经网络,目前尚未实现在高层次的API,你可以看到在演示曲怎么办呢。高级别和低级别的版本存在许多演示。

The low-level api consists mainly of the class SnnsR-class, which internally holds a pointer to a C++ object of  the class SnnsCLib, i.e., an instance of the SNNS kernel. The class furthermore implements a calling mechanism for methods of the SnnsCLib  object, so that they can be called conveniently using the "$"-operator. This calling mechanism also allows for transparent masking of methods or extending the  kernel with new methods from within R. See $,SnnsR-method. R-functions that are added by RSNNS to the kernel are documented in  this manual under topics beginning with SnnsRObject$. Documentation of the original SNNS kernel user interface functions can be found in the SNNS User Manual 4.2 pp 290-314.  A call to, e.g., the SNNS kernel function krui_getNoOfUnits(...) can be done with SnnsRObject$getNoOfUnits(...). However, a few functions were excluded  from the wrapping for various reasons. Fur more details and other known issues see the file /inst/doc/KnownIssues.
低级别的API主要由类SnnsR-class,它的内部保存一个指针,指向一个C + +对象的类SnnsCLib,即的SNNS内核的一个实例。此外,该类SnnsCLib对象的方法,实现了一个调用机制,使他们能够方便被称为使用“$”操作符。这种调用机制还允许透明屏蔽的方法,或以新的方式扩展内核内R. $,SnnsR-method。本手册中的内容开始SnnsRObject$R-函数添加到内核的RSNNS。的原始SNNS内核的用户界面功能的文档中可以找到SNNS用户手册4.2页290-314。的调用,例如,SNNS核心功能krui_getNoOfUnits(...)可以完成SnnsRObject$getNoOfUnits(...)。然而,从包装因各种原因被排除在外的一些功能。皮草更多的细节和其他已知问题,请参阅文件/安装/ DOC / KnownIssues。

Most of the example data included in SNNS is also present in this package, see snnsData.
大多数的示例数据在SNNS在此包中也存在,请参阅snnsData。

Additional information is also available at the project website:
有关其他信息,也可在项目网站:

http://sci2s.ugr.es/dicits/software/RSNNS



(作者)----------Author(s)----------


Christoph Bergmeir <a href="mailto:c.bergmeir@decsai.ugr.es">c.bergmeir@decsai.ugr.es</a>

and Jos茅 M. Ben铆tez <a href="mailto:j.m.benitez@decsai.ugr.es">j.m.benitez@decsai.ugr.es</a>

DiCITS Lab, Sci2s group, DECSAI, University of Granada.

<a href="http://dicits.ugr.es">http://dicits.ugr.es</a>, <a href="http://sci2s.ugr.es">http://sci2s.ugr.es</a>



参考文献----------References----------

http://www.jstatsoft.org/v46/i07/







http://www.ra.cs.uni-tuebingen.de/SNNS/
<h3>See Also</h3>  <code>mlp</code>, <code>dlvq</code>, <code>rbf</code>, <code>rbfDDA</code>, <code>elman</code>,
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-27 18:45 , Processed in 0.354271 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表