Linda(rrcov)
Linda()所属R语言包:rrcov
Robust Linear Discriminant Analysis
鲁棒线性判别分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Robust linear discriminant analysis based on MCD and returns the results as an object of class Linda (aka constructor).
鲁棒线性判别分析的基础上MCD和返回的结果作为的对象类Linda(又名构造函数)。
用法----------Usage----------
Linda(x, ...)
## Default S3 method:[默认方法]
Linda(x, grouping, prior = proportions, tol = 1.0e-4,
method = c("mcd", "mcdA", "mcdB", "mcdC", "fsa"),
alpha=0.5, trace=FALSE, ...)
参数----------Arguments----------
参数:x
a matrix or data frame containing the explanatory variables (training set).
矩阵或数据框包含的解释变量(训练集)。
参数:grouping
grouping variable: a factor specifying the class for each observation.
分组变量:指定一个类为每个观测的一个因素。
参数:prior
prior probabilities, default to the class proportions for the training set.
先验概率,默认为类的训练集的比例。
参数:tol
tolerance
公差
参数:method
method
方法
参数:alpha
this parameter measures the fraction of outliers the algorithm should resist. In MCD alpha controls the size of the subsets over which the determinant is minimized, i.e. alpha*n observations are used for computing the determinant. Allowed values are between 0.5 and 1 and the default is 0.5.
这个参数测量异常值的算法应该抵制的分数。在MCD阿尔法控制行列式最小的子集的大小,即α* n个观察用于计算行列式。允许的值是0.5~1之间,默认为0.5。
参数:trace
whether to print intermediate results. Default is trace = FALSE
是否要打印的中间结果。默认是trace = FALSE
参数:...
arguments passed to or from other methods
参数传递给其他方法
Details
详细信息----------Details----------
details
详细信息
值----------Value----------
Returns an S4 object of class Linda
返回S4对象的类Linda
警告----------Warning ----------
Still an experimental version!
仍然是一个实验版本!
(作者)----------Author(s)----------
Valentin Todorov <a href="mailto:valentin.todorov@chello.at">valentin.todorov@chello.at</a>
参考文献----------References----------
Journal of the American Statistical Association, 92, 136–143.
Statistical Methods and Applications, 15, 395–407, doi:10.1007/s10260-006-0032-6.
Linear Discriminant Analysis Methods. REVSTAT Statistical Journal, 5, p 63–83. URL www.ine.pt/revstat/pdf/rs070104.pdf.
An Object Oriented Framework for Robust Multivariate Analysis. Journal of Statistical Software, 32(3), 1–47. URL http://www.jstatsoft.org/v32/i03/.
参见----------See Also----------
CovMcd
CovMcd
实例----------Examples----------
## Example anorexia[#例厌食症]
library(MASS)
data(anorexia)
## start with the classical estimates[#开始与传统的估计]
lda <- LdaClassic(Treat~., data=anorexia)
predict(lda)@classification
## try now the robust LDA with the default method (MCD with pooled whitin cov matrix)[强劲的LDA现在尝试用默认的方法汇集whitin覆盖矩阵(MCD)]
rlda <- Linda(Treat~., data= anorexia)
predict(rlda)@classification
## try the other methods[#尝试其他方法。]
Linda(Treat~., data= anorexia, method="mcdA")
Linda(Treat~., data= anorexia, method="mcdB")
Linda(Treat~., data= anorexia, method="mcdC")
## try the Hawkins&McLachlan method[#尝试的霍金斯和穆尔法]
## use the default method[#使用默认的方法]
grp <- anorexia[,1]
grp <- as.factor(grp)
x <- anorexia[,2:3]
Linda(x, grp, method="fsa")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|