kinship.BLUP(rrBLUP)
kinship.BLUP()所属R语言包:rrBLUP
Genomic prediction by kinship-BLUP
基因组预测的血缘关系BLUP
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function uses mixed.solve for genomic prediction based on the kinship between lines.
此功能使用mixed.solve行之间的血缘关系基础上的基因预测。
用法----------Usage----------
kinship.BLUP(y, G.train, G.pred=NULL, X=NULL, Z.train=NULL,
K.method="RR", n.profile=10, mixed.method="REML", n.core=1)
参数----------Arguments----------
参数:y
Vector (n.obs \times 1) of observations. Missing values (NA) are omitted (see mixed.solve).
观测向量(n.obs \times 1)。遗漏值(NA)省略(见mixed.solve“)。
参数:G.train
Matrix (n.train \times m) of unphased genotypes for the training population: n.train lines with m bi-allelic markers. Genotypes should be coded as {-1,0,1} = {aa,Aa,AA}; fractional (imputed) and missing (NA) alleles are allowed.
矩阵(n.train \times m)矢志不渝的基因型的培训人口:n.train行m双等位基因标记。基因型应为{-1,0,1} = {AA,AA,AA};分数(虚拟)和失踪(NA)基因编码。
参数:G.pred
Matrix (n.pred \times m) of unphased genotypes for the prediction population: n.pred lines with m bi-allelic markers. Genotypes should be coded as {-1,0,1} = {aa,Aa,AA}; fractional (imputed) and missing (NA) alleles are allowed.
矩阵(n.pred \times m)矢志不渝的基因型的预测人口:n.pred行m双等位基因标记。基因型应为{-1,0,1} = {AA,AA,AA};分数(虚拟)和失踪(NA)基因编码。
参数:X
Design matrix (n.obs \times p) of fixed effects. If not passed, a vector of 1's is used to model the intercept.
设计矩阵(n.obs \times p)的固定效果。如果不通过,一个向量的1的用于建模的截距。
参数:Z.train
0-1 matrix (n.obs \times n.train) relating observations to lines in the training set. If not passed the identity matrix is used.
0-1矩阵(n.obs \times n.train)有关观测到训练集线。如果不通过使用单位矩阵。
参数:K.method
"RR" (default) is ridge regression, for which K is the realized additive relationship matrix computed with A.mat. The option "GAUSS" is a Gaussian kernel (K = e^{-D^2/θ^2}) and "EXP" is an exponential kernel (K = e^{-D/θ}), where Euclidean distances D are computed with dist.
“RR”(默认)是岭回归,其中K是与A.mat实现的添加剂关系矩阵计算。选项中的“高斯”是一个的高斯内核(K = e^{-D^2/θ^2})和“EXP”是一个指数内核(K = e^{-D/θ}),其中欧氏距离Ddist计算。
参数:n.profile
For K.method = "GAUSS" or "EXP", the number of points to use in the log-likelihood profile for the scale parameter θ.
K.method =“高斯”或“EXP”,点的数量使用对数似然分布的尺度参数θ。
参数:mixed.method
Either "REML" (default) or "ML".
无论是“REML”(默认)或“ML”。
参数:n.core
For Mac, Linux, and UNIX users, setting n.core > 1 will enable parallel execution on a machine with multiple cores. R package multicore must be installed for this to work. Do not run multicore from within the R GUI; you must use the command line.
在Mac,Linux,和UNIX用户,设置n.core> 1,使多核心的机器上并行执行。 R封装的多核必须安装这个工作。不要在R GUI运行多核,你必须使用命令行。
值----------Value----------
$g.train BLUP solution for the training set
g.train BLUP的解决方案,训练集
$g.pred BLUP solution for the prediction set (when G.pred != NULL)
$ g.pred BLUP法 - (时G.pred!= NULL)的解决方案的预测套组
$beta ML estimate of fixed effects
测试ML估计固定效应
For GAUSS or EXP, function also returns
对于高斯和EXP,函数也返回
$profile log-likelihood profile for the scale parameter
美元对数似然为尺度参数的档案
参考文献----------References----------
参见----------See Also----------
mixed.solve
mixed.solve
实例----------Examples----------
#random population of 200 lines with 1000 markers[随机人口200线1000标记]
G <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {
G[i,] <- ifelse(runif(1000)<0.5,-1,1)
}
#random phenotypes[随机表型]
g <- as.vector(crossprod(t(G),rnorm(1000)))
h2 <- 0.5
y <- g + rnorm(200,mean=0,sd=sqrt((1-h2)/h2*var(g)))
#split in half for training and prediction[对半分割为训练和预测]
train <- 1:100
pred <- 101:200
ans <- kinship.BLUP(y=y[train],G.train=G[train,],G.pred=G[pred,],K.method="GAUSS")
#correlation accuracy[相关准确性]
r.gy <- cor(ans$g.pred,y[pred])
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|