找回密码
 注册
查看: 530|回复: 0

R语言 ROptRegTS包 getInfRobRegTypeIC()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 23:23:43 | 显示全部楼层 |阅读模式
getInfRobRegTypeIC(ROptRegTS)
getInfRobRegTypeIC()所属R语言包:ROptRegTS

                                         Generic Function for the Computation of Optimally Robust Regression-Type ICs
                                         通用函数计算的的最优稳健回归型集成电路

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Generic function for the computation of optimally robust regression-type ICs  in case of infinitesimal robust models. This function is rarely called directly.
通用功能的最佳稳健回归型芯片的情况下的无穷可靠的模型计算。很少直接调用此函数。


用法----------Usage----------


getInfRobRegTypeIC(ErrorL2deriv, Regressor, risk, neighbor, ...)

## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asBias,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asBias,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asBias,Av1CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,Distribution,asBias,Av2CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,Distribution,asCov,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)

## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asCov,TotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)

## S4 method for signature 'UnivariateDistribution,Distribution,asCov,CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)

## S4 method for signature 'UnivariateDistribution,Distribution,asCov,CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)

## S4 method for signature 'UnivariateDistribution,Distribution,asCov,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)

## S4 method for signature 'UnivariateDistribution,Distribution,asCov,Av2CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)

## S4 method for signature 'UnivariateDistribution,Distribution,asCov,Av1CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo)

## S4 method for signature 'UnivariateDistribution,Distribution,asGRisk,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,Distribution,asGRisk,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,Distribution,asGRisk,Av2CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,Distribution,asGRisk,Av1CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,asBias,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,asBias,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,MultivariateDistribution,asBias,Av1CondTotalVarNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'RealRandVariable,Distribution,asBias,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorSymm, RegSymm, ErrorDistr, ErrorL2derivSymm,
                ErrorL2derivDistrSymm, Finfo, trafo, upper, z.start, A.start, maxiter, tol, warn)

## S4 method for signature 'RealRandVariable,Distribution,asBias,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorSymm, RegSymm, ErrorDistr, ErrorL2derivSymm,
                ErrorL2derivDistrSymm, Finfo, trafo, upper, z.start, A.start, maxiter, tol, warn)

## S4 method for signature 'RealRandVariable,Distribution,asCov,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorDistr, Finfo, trafo)

## S4 method for signature 'RealRandVariable,Distribution,asCov,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorDistr, Finfo, trafo)

## S4 method for signature 'RealRandVariable,Distribution,asGRisk,ContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorSymm, RegSymm, ErrorDistr, ErrorL2derivSymm,
                ErrorL2derivDistrSymm, Finfo, trafo, upper, z.start, A.start, maxiter, tol, warn)

## S4 method for signature 'RealRandVariable,Distribution,asGRisk,Av1CondContNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorSymm, RegSymm, ErrorDistr, ErrorL2derivSymm,
                ErrorL2derivDistrSymm, Finfo, trafo, upper, z.start, A.start, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asUnOvShoot,UncondNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)

## S4 method for signature 'UnivariateDistribution,UnivariateDistribution,asUnOvShoot,CondNeighborhood'
getInfRobRegTypeIC(ErrorL2deriv,
                Regressor, risk, neighbor, ErrorL2derivDistrSymm, RegSymm, Finfo, trafo,
                upper, maxiter, tol, warn)



参数----------Arguments----------

参数:ErrorL2deriv
L2-derivative of ErrorDistr.
L2衍生ErrorDistr。


参数:Regressor
regressor.
回归量。


参数:risk
object of class "RiskType".
对象类"RiskType"。


参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。


参数:...
additional parameters.
附加参数。


参数:ErrorSymm
symmetry of ErrorDistr.
对称的ErrorDistr。


参数:ErrorL2derivDistrSymm
symmetry of ErrorL2derivDistr.
对称的ErrorL2derivDistr。


参数:RegSymm
symmetry of RegDistr.
对称的RegDistr。


参数:ErrorDistr
error distribution.
误差分布。


参数:ErrorL2derivSymm
symmetry of ErrorL2deriv.
对称的ErrorL2deriv。


参数:Finfo
Fisher information matrix.
Fisher信息矩阵。


参数:trafo
matrix: transformation of the parameter.
矩阵变换的参数。


参数:upper
upper bound for the optimal clipping bound.
上界的最佳剪辑约束。


参数:maxiter
the maximum number of iterations
最大迭代次数


参数:tol
the desired accuracy (convergence tolerance).
所需的精度(收敛宽容)。


参数:warn
logical: print warnings.
逻辑:打印警告。


参数:z.start
initial value for the centering constant/function.
中心的常数/函数的初始值。


参数:A.start
initial value for the standardizing matrix.
标准化矩阵的初始值。


值----------Value----------

The optimally robust IC is computed.
计算最优鲁棒的IC。


方法----------Methods----------

  


ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asBias", neighbor = "ContNeighborhood"  computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=的“asBias”邻居=“ContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asBias", neighbor = "Av1CondContNeighborhood"  computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=的“asBias”邻居=“Av1CondContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asBias", neighbor = "Av1CondTotalVarNeighborhood"  computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=的“asBias”邻居=“Av1CondTotalVarNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asBias", neighbor = "Av2CondContNeighborhood"  computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asBias”邻居=“Av2CondContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "ContNeighborhood"  computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“ContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asCov", neighbor = "TotalVarNeighborhood"  computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=的“asCov”邻居=“TotalVarNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "CondContNeighborhood"  computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“CondContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "CondTotalVarNeighborhood"  computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“CondTotalVarNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "Av1CondContNeighborhood"  computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“Av1CondContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "Av2CondContNeighborhood"  computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“Av2CondContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asCov", neighbor = "Av1CondTotalVarNeighborhood"  computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“分配”,风险=的“asCov”邻居=“Av1CondTotalVarNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asGRisk", neighbor = "ContNeighborhood"  computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“风险分配”,=“asGRisk”的,邻居=“ContNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asGRisk", neighbor = "Av1CondContNeighborhood"  computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“风险分配”,=“asGRisk”的,邻居=“Av1CondContNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asGRisk", neighbor = "Av2CondContNeighborhood"  computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“风险分配”,=“asGRisk”的,邻居=“Av2CondContNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。




ErrorL2deriv = "UnivariateDistribution", Regressor = "Distribution", risk = "asGRisk", neighbor = "Av1CondTotalVarNeighborhood"  computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“风险分配”,=“asGRisk”的,邻居=“Av1CondTotalVarNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。




ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", risk = "asBias", neighbor = "ContNeighborhood"  computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”的风险=的“asBias”邻居=“ContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", risk = "asBias", neighbor = "Av1CondContNeighborhood"  computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”的风险=的“asBias”邻居=“Av1CondContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。




ErrorL2deriv = "UnivariateDistribution", Regressor = "MultivariateDistribution", risk = "asBias", neighbor = "Av1CondTotalVarNeighborhood"  computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“MultivariateDistribution”的风险=的“asBias”邻居=“Av1CondTotalVarNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。




ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asBias", neighbor = "ContNeighborhood"  computes the bias optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,风险的“asBias”邻居=“ContNeighborhood”的计算偏差的最佳L2微回归家庭的影响曲线。




ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asCov", neighbor = "ContNeighborhood"  computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,风险的“asCov”邻居=“ContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。




ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asCov", neighbor = "Av1CondContNeighborhood"  computes the classical optimal influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”,风险的“asCov”邻居=“Av1CondContNeighborhood”的计算经典的最优L2微回归家庭的影响曲线。




ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asGRisk", neighbor = "ContNeighborhood"  computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”风险=的“asGRisk”邻居=“ContNeighborhood”的计算曲线L2微回归家庭的最佳强大的影响力。




ErrorL2deriv = "RealRandVariable", Regressor = "Distribution", risk = "asGRisk", neighbor = "Av1CondContNeighborhood" computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“RealRandVariable”,REGRESSOR =“分配”风险=的“asGRisk”邻居=“Av1CondContNeighborhood”的计算曲线L2微回归家庭的最佳强大的影响力。




ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asUnOvShoot", neighbor = "UncondNeighborhood"  computes the optimally robust influence curve for L2 differentiable regression-type families.
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=“asUnOvShoot”的,邻居=“UncondNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。




ErrorL2deriv = "UnivariateDistribution", Regressor = "UnivariateDistribution", risk = "asUnOvShoot", neighbor = "CondNeighborhood"  computes the optimally robust influence curve for L2 differentiable regression-type families.   
ErrorL2deriv =“UnivariateDistribution”,REGRESSOR =“UnivariateDistribution”的风险=“asUnOvShoot”的,邻居=“CondNeighborhood”计算最优强大的影响力,曲线L2微回归家庭。


(作者)----------Author(s)----------


Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>



参考文献----------References----------

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106&ndash;115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness.  Bayreuth: Dissertation.

参见----------See Also----------

InfRobRegTypeModel-class
InfRobRegTypeModel-class

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 22:56 , Processed in 0.029935 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表