找回密码
 注册
查看: 510|回复: 0

R语言 ROptEst包 getInfGamma()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 23:15:47 | 显示全部楼层 |阅读模式
getInfGamma(ROptEst)
getInfGamma()所属R语言包:ROptEst

                                        Generic Function for the Computation of the Optimal Clipping Bound
                                         通用功能的最优裁剪绑定的计算

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Generic function for the computation of the optimal clipping bound. This function is rarely called directly. It is called by getInfClip  to compute optimally robust ICs.
通用函数的计算绑定的最佳剪辑。很少直接调用此函数。这就是所谓的getInfClip的来计算最佳强大的IC。


用法----------Usage----------


getInfGamma(L2deriv, risk, neighbor, biastype, ...)

## S4 method for signature 'UnivariateDistribution,asGRisk,ContNeighborhood,BiasType'
getInfGamma(L2deriv,
     risk, neighbor, biastype, cent, clip)

## S4 method for signature 'UnivariateDistribution,asGRisk,TotalVarNeighborhood,BiasType'
getInfGamma(L2deriv,
     risk, neighbor, biastype, cent, clip)

## S4 method for signature 'RealRandVariable,asMSE,ContNeighborhood,BiasType'
getInfGamma(L2deriv,
     risk, neighbor, biastype, Distr, stand, cent, clip, power = 1L)

## S4 method for signature 'RealRandVariable,asMSE,TotalVarNeighborhood,BiasType'
getInfGamma(L2deriv,
     risk, neighbor, biastype, Distr, stand, cent, clip, power = 1L)

## S4 method for signature 'UnivariateDistribution,asUnOvShoot,ContNeighborhood,BiasType'
getInfGamma(L2deriv,
     risk, neighbor, biastype, cent, clip)

## S4 method for signature 'UnivariateDistribution,asMSE,ContNeighborhood,onesidedBias'
getInfGamma(L2deriv,
     risk, neighbor, biastype, cent, clip)

## S4 method for signature 'UnivariateDistribution,asMSE,ContNeighborhood,asymmetricBias'
getInfGamma(L2deriv,
    risk, neighbor, biastype, cent, clip)



参数----------Arguments----------

参数:L2deriv
L2-derivative of some L2-differentiable family  of probability measures.
L2-衍生的一些L2-微家庭的概率措施。


参数:risk
object of class "RiskType".
对象类"RiskType"。


参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。


参数:biastype
object of class "BiasType"
对象的类"BiasType"


参数:...
additional parameters
额外的参数


参数:cent
optimal centering constant.
最优的中心不变。


参数:clip
optimal clipping bound.
最佳剪裁的约束。


参数:stand
standardizing matrix.
规范矩阵。


参数:Distr
object of class "Distribution".
对象类"Distribution"。


参数:power
exponent for the integrand; by default 1, but may also be 2, for optimization in getLagrangeMultByOptim.
指数的积,默认情况下,1,但也可能是2,优化getLagrangeMultByOptim。


Details

详细信息----------Details----------

The function is used in case of asymptotic G-risks; confer Ruckdeschel and Rieder (2004).
渐近G-风险;赋予Ruckdeschel和里德尔(2004年)的情况下,在使用该功能。


方法----------Methods----------

  


L2deriv = "UnivariateDistribution", risk = "asGRisk",  neighbor = "ContNeighborhood",  biastype = "BiasType" used by getInfClip for symmetric bias.
L2deriv =的“UnivariateDistribution”风险=“asGRisk”的,邻居=“ContNeighborhood”,biastype =“BiasType”的使用getInfClip对称偏置。




L2deriv = "UnivariateDistribution", risk = "asGRisk",  neighbor = "TotalVarNeighborhood",  biastype = "BiasType" used by getInfClip for symmetric bias.
L2deriv =的“UnivariateDistribution”风险=“asGRisk”的,邻居=“TotalVarNeighborhood”,biastype =“BiasType”的使用getInfClip对称偏置。




L2deriv = "RealRandVariable", risk = "asMSE",  neighbor = "ContNeighborhood",  biastype = "BiasType" used by getInfClip for symmetric bias.
L2deriv =“RealRandVariable的”风险=“asMSE”的,邻居=“ContNeighborhood”,biastype =“BiasType”的使用getInfClip对称偏置。




L2deriv = "RealRandVariable", risk = "asMSE", neighbor = "TotalVarNeighborhood", biastype = "BiasType" used by getInfClip for symmetric bias.
L2deriv =“RealRandVariable的”风险=“asMSE”的,邻居=“TotalVarNeighborhood”,biastype =“BiasType”的使用getInfClip对称偏置。




L2deriv = "UnivariateDistribution", risk = "asUnOvShoot",  neighbor = "ContNeighborhood",  biastype = "BiasType" used by getInfClip for symmetric bias.
L2deriv =的“UnivariateDistribution”,风险的“asUnOvShoot”,邻居=“ContNeighborhood”,biastype =“BiasType”的使用getInfClip对称偏置。




L2deriv = "UnivariateDistribution", risk = "asMSE",  neighbor = "ContNeighborhood",  biastype = "onesidedBias" used by getInfClip for onesided bias.
L2deriv =的“UnivariateDistribution”风险=“asMSE”的,邻居=“ContNeighborhood”,biastype =“onesidedBias”的使用getInfClip片面的偏见。




L2deriv = "UnivariateDistribution", risk = "asMSE",  neighbor = "ContNeighborhood",  biastype = "asymmetricBias" used by getInfClip for asymmetric bias.   
L2deriv =的“UnivariateDistribution”风险=“asMSE”的,邻居=“ContNeighborhood”,biastype =“asymmetricBias”的使用getInfClip不对称的偏差。


(作者)----------Author(s)----------


Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>,
Peter Ruckdeschel <a href="mailtoeter.Ruckdeschel@itwm.fraunhofer.de">eter.Ruckdeschel@itwm.fraunhofer.de</a>



参考文献----------References----------

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106&ndash;115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statistics &amp; Decisions 22, 201-223.
Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods in Statistics 14(1), 105-131.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness.  Bayreuth: Dissertation.

参见----------See Also----------

asGRisk-class, asMSE-class, asUnOvShoot-class, ContIC-class,
asGRisk-class,asMSE-class,asUnOvShoot-class,ContIC-class,

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 20:55 , Processed in 0.020270 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表