getInfCent(ROptEst)
getInfCent()所属R语言包:ROptEst
Generic Function for the Computation of the Optimal Centering Constant/Lower Clipping Bound
通用函数的计算的最优居中恒/剪报展
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Generic function for the computation of the optimal centering constant (contamination neighborhoods) respectively, of the optimal lower clipping bound (total variation neighborhood). This function is rarely called directly. It is used to compute optimally robust ICs.
通用功能为中心的最佳常数(污染街道)分别计算,最佳的剪裁约束(总变差附近)。很少直接调用此函数。它被用来计算最佳鲁棒的IC。
用法----------Usage----------
getInfCent(L2deriv, neighbor, biastype, ...)
## S4 method for signature 'UnivariateDistribution,ContNeighborhood,BiasType'
getInfCent(L2deriv,
neighbor, biastype, clip, cent, tol.z, symm, trafo)
## S4 method for signature 'UnivariateDistribution,TotalVarNeighborhood,BiasType'
getInfCent(L2deriv,
neighbor, biastype, clip, cent, tol.z, symm, trafo)
## S4 method for signature 'RealRandVariable,ContNeighborhood,BiasType'
getInfCent(L2deriv,
neighbor, biastype, Distr, z.comp, w, tol.z = .Machine$double.eps^.5)
## S4 method for signature 'RealRandVariable,TotalVarNeighborhood,BiasType'
getInfCent(L2deriv,
neighbor, biastype, Distr, z.comp, w, tol.z = .Machine$double.eps^.5)
## S4 method for signature 'UnivariateDistribution,ContNeighborhood,onesidedBias'
getInfCent(L2deriv,
neighbor, biastype, clip, cent, tol.z, symm, trafo)
## S4 method for signature 'UnivariateDistribution,ContNeighborhood,asymmetricBias'
getInfCent(L2deriv,
neighbor, biastype, clip, cent, tol.z, symm, trafo)
参数----------Arguments----------
参数:L2deriv
L2-derivative of some L2-differentiable family of probability measures.
L2-衍生的一些L2-微家庭的概率措施。
参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。
参数:biastype
object of class "BiasType"
对象的类"BiasType"
参数:...
additional parameters.
附加参数。
参数:clip
optimal clipping bound.
最佳剪裁的约束。
参数:cent
optimal centering constant.
最优的中心不变。
参数:tol.z
the desired accuracy (convergence tolerance).
所需的精度(收敛宽容)。
参数:symm
logical: indicating symmetry of L2deriv.
逻辑:表示对称的L2deriv。
参数:trafo
matrix: transformation of the parameter.
矩阵变换的参数。
参数:Distr
object of class Distribution.
对象类Distribution。
参数:z.comp
logical vector: indication which components of the centering constant have to be computed.
逻辑向量指示要计算组件的中心不变。
参数:w
object of class RobWeight; current weight
对象的类RobWeight;目前的体重
值----------Value----------
The optimal centering constant is computed.
计算的最佳的定心常数。
方法----------Methods----------
L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "BiasType" computation of optimal centering constant for symmetric bias.
L2deriv =的“UnivariateDistribution”,邻居=“ContNeighborhood”,biastype =的“BiasType”的最佳中心对称偏置常数的计算。
L2deriv = "UnivariateDistribution", neighbor = "TotalVarNeighborhood", biastype = "BiasType" computation of optimal lower clipping bound for symmetric bias.
L2deriv =“UnivariateDistribution”,邻居=“TotalVarNeighborhood”,biastype =“BiasType”计算最佳的低限幅约束的对称偏差。
L2deriv = "RealRandVariable", neighbor = "TotalVarNeighborhood", biastype = "BiasType" computation of optimal centering constant for symmetric bias.
L2deriv =“RealRandVariable”,邻居=“TotalVarNeighborhood”,biastype =“BiasType”的最佳中心对称偏置常数的计算。
L2deriv = "RealRandVariable", neighbor = "ContNeighborhood", biastype = "BiasType" computation of optimal centering constant for symmetric bias.
L2deriv =“RealRandVariable”,邻居=“ContNeighborhood”,biastype =“BiasType”的最佳中心对称偏置常数的计算。
L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "onesidedBias" computation of optimal centering constant for onesided bias.
L2deriv =的“UnivariateDistribution”,邻居=“ContNeighborhood”,biastype =“onesidedBias”的计算最佳围绕常数片面的偏见。
L2deriv = "UnivariateDistribution", neighbor = "ContNeighborhood", biastype = "asymmetricBias" computation of optimal centering constant for asymmetric bias.
L2deriv =的“UnivariateDistribution”,邻居=“ContNeighborhood”,biastype =的“asymmetricBias”的最佳中心的非对称偏置常数的计算。
(作者)----------Author(s)----------
Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>,
Peter Ruckdeschel <a href="mailtoeter.Ruckdeschel@itwm.fraunhofer.de">eter.Ruckdeschel@itwm.fraunhofer.de</a>
参考文献----------References----------
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. (2005) Optimally One-Sided Bounded Influence Curves. Mathematical Methods in Statistics 14(1), 105-131.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
参见----------See Also----------
ContIC-class, TotalVarIC-class
ContIC-class,TotalVarIC-class
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|