找回密码
 注册
查看: 288|回复: 0

R语言 ROptEstOld包 getInfGamma()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 23:07:33 | 显示全部楼层 |阅读模式
getInfGamma(ROptEstOld)
getInfGamma()所属R语言包:ROptEstOld

                                        Generic Function for the Computation of the Optimal Clipping Bound
                                         通用功能的最优裁剪绑定的计算

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Generic function for the computation of the optimal clipping bound. This function is rarely called directly. It is called by getInfClip  to compute optimally robust ICs.
通用函数的计算绑定的最佳剪辑。很少直接调用此函数。这就是所谓的getInfClip的来计算最佳强大的IC。


用法----------Usage----------


getInfGamma(L2deriv, risk, neighbor, ...)

## S4 method for signature 'UnivariateDistribution,asMSE,ContNeighborhood'
getInfGamma(L2deriv, risk, neighbor, cent, clip)

## S4 method for signature 'UnivariateDistribution,asGRisk,TotalVarNeighborhood'
getInfGamma(L2deriv, risk, neighbor, cent, clip)

## S4 method for signature 'RealRandVariable,asMSE,ContNeighborhood'
getInfGamma(L2deriv, risk, neighbor, Distr, stand, cent, clip)

## S4 method for signature 'UnivariateDistribution,asUnOvShoot,ContNeighborhood'
getInfGamma(L2deriv, risk, neighbor, cent, clip)



参数----------Arguments----------

参数:L2deriv
L2-derivative of some L2-differentiable family  of probability measures.
L2-衍生的一些L2-微家庭的概率措施。


参数:risk
object of class "RiskType".
对象类"RiskType"。


参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。


参数:...
additional parameters
额外的参数


参数:cent
optimal centering constant.
最优的中心不变。


参数:clip
optimal clipping bound.
最佳剪裁的约束。


参数:stand
standardizing matrix.
规范矩阵。


参数:Distr
object of class "Distribution".
对象类"Distribution"。


Details

详细信息----------Details----------

The function is used in case of asymptotic G-risks; confer Ruckdeschel and Rieder (2004).
渐近G-风险;赋予Ruckdeschel和里德尔(2004年)的情况下,在使用该功能。


方法----------Methods----------

  


L2deriv = "UnivariateDistribution", risk = "asMSE",  neighbor = "ContNeighborhood" used by getInfClip.
L2deriv =的“UnivariateDistribution”,的风险=“asMSE”的,邻居=的“ContNeighborhood”使用getInfClip。




L2deriv = "UnivariateDistribution", risk = "asGRisk",  neighbor = "TotalVarNeighborhood" used by getInfClip.
L2deriv =的“UnivariateDistribution”,的风险=“asGRisk”的,邻居=的“TotalVarNeighborhood”使用getInfClip。




L2deriv = "RealRandVariable", risk = "asMSE",  neighbor = "ContNeighborhood" used by getInfClip.
L2deriv =“RealRandVariable的”风险=“asMSE”的,邻居=的“ContNeighborhood”使用getInfClip。




L2deriv = "UnivariateDistribution", risk = "asUnOvShoot",  neighbor = "ContNeighborhood" used by getInfClip.   
L2deriv =的“UnivariateDistribution”风险=的“asUnOvShoot”,邻居=的“ContNeighborhood”使用getInfClip。


(作者)----------Author(s)----------


Matthias Kohl <a href="mailto:Matthias.Kohl@stamats.de">Matthias.Kohl@stamats.de</a>



参考文献----------References----------

Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106&ndash;115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Ruckdeschel, P. and Rieder, H. (2004) Optimal Influence Curves for General Loss Functions. Statistics &amp; Decisions (submitted).
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness.  Bayreuth: Dissertation.

参见----------See Also----------

asGRisk-class, asMSE-class, asUnOvShoot-class, ContIC-class,
asGRisk-class,asMSE-class,asUnOvShoot-class,ContIC-class,

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 19:55 , Processed in 0.023538 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表