找回密码
 注册
查看: 421|回复: 0

R语言 robustHD包 lambda0()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 22:23:41 | 显示全部楼层 |阅读模式
lambda0(robustHD)
lambda0()所属R语言包:robustHD

                                        Penalty parameter for sparse LTS regression
                                         的惩罚参数为稀疏LTS回归

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Use bivariate winsorization to estimate the smallest value of the penalty parameter for sparse least trimmed squares regression that sets all coefficients to zero.
使用二元极值调整稀疏至少修剪最小二乘回归,将所有的系数为0的惩罚参数估计值最小的。


用法----------Usage----------


  lambda0(x, y, intercept = TRUE, const = 2, prob = 0.95,
    tol = .Machine$double.eps^0.5,
    eps = .Machine$double.eps, ...)



参数----------Arguments----------

参数:x
a numeric matrix containing the predictor variables.
一个包含预测变量的数值矩阵。


参数:y
a numeric vector containing the response variable.
一个数字包含响应变量的向量。


参数:intercept
a logical indicating whether a constant term should be included in the model (the default is TRUE).
逻辑指示是否应包含在模型中的常数项(默认为TRUE)。


参数:const
numeric; tuning constant to be used in univariate winsorization (defaults to 2).
数字;时间常数使用单因素极值调整(默认为2)。


参数:prob
numeric; probability for the quantile of the chi-squared distribution to be used in bivariate winsorization (defaults to 0.95).
数字chi-squared分布二元极值调整至0.95(默认)中要使用的分位数的概率。


参数:tol
a small positive numeric value used to determine singularity issues in the computation of correlation estimates for bivariate winsorization (see corHuber).
一个小的正数值,用于确定奇异二元极值调整的相关估计的计算问题(见corHuber)。


参数:eps
a small positive numeric value used to determine whether the robust scale estimate of a variable is too small (an effective zero).
一个小的正数值使用规模的鲁棒估计的一个变量,以确定是否是太小(一种有效的零)。


参数:...
additional arguments to be passed to robStandardize.
额外的参数传递给robStandardize。


Details

详细信息----------Details----------

The estimation procedure is inspired by the calculation of the respective penalty parameter in the first step of the classical LARS algorithm. First, two-dimensional data blocks consisting of the response with each predictor variable are cleaned via bivariate winsorization.  For each block, the following computations are then performed.  If an intercept is included in the model, the cleaned response is centered and the corresponding cleaned predictor is centered and scaled to have unit norm.  Otherwise the variables are not centered, but the predictor is scaled to have unit norm.  Finally, the dot product of the response and the corresponding predictor is computed.  The largest absolute value of those dot products, rescaled to fit the parametrization of the sparse LTS definition, yields the estimate of the smallest penalty parameter that sets all coefficients to zero.
估算过程的灵感来自于相应的惩罚参数的计算LARS的经典算法的第一步。首先,二维数据块包含与每个预测变量的响应是通过二元极值调整清洗。对于每个块,然后进行以下计算。如果包含在模型中的截距,清洁的响应的中心和相应的清洗预测器居中和缩放到有单元规范。否则的变量不集中,但预测进行缩放,以规范单位。最后,响应和相应的预测器的点积计算。的那些点的产品,重新调整,以适应稀疏LTS定义的参数化,产生的最大绝对值设置所有的系数为零的最小的罚参数的估计值。


值----------Value----------

A robust estimate of the smallest value of the penalty parameter for sparse LTS regression that sets all coefficients to zero.
一个强大的稀疏的LTS的回归,将所有的系数为0的惩罚参数估计的最小值。


(作者)----------Author(s)----------



Andreas Alfons




参考文献----------References----------

(2004) Least angle regression. The Annals of Statistics, 32(2), 407–499.
linear model selection based on least angle regression. Journal of the American Statistical Association, 102(480), 1289–1299.

参见----------See Also----------

sparseLTS, sparseLTSGrid, winsorize
sparseLTS,sparseLTSGrid,winsorize


实例----------Examples----------


## generate data[#生成数据]
# example is not high-dimensional to keep computation time low[例如不高维的计算时间保持低]
library("mvtnorm")
set.seed(1234)  # for reproducibility[可重复性]
n <- 100  # number of observations[的观测数]
p <- 25   # number of variables[的变量数目]
beta <- rep.int(c(1, 0), c(5, p-5))  # coefficients[系数]
sigma <- 0.5      # controls signal-to-noise ratio[控制的信号 - 噪声比]
epsilon <- 0.1    # contamination level[污染水平]
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x &lt;- rmvnorm(n, sigma=Sigma)    # predictor matrix[预测矩阵]
e &lt;- rnorm(n)                   # error terms[误差项]
i &lt;- 1:ceiling(epsilon*n)       # observations to be contaminated[受到污染的意见]
e[i] &lt;- e[i] + 5                # vertical outliers[垂直离群]
y &lt;- c(x %*% beta + sigma * e)  # response[响应]
x[i,] &lt;- x[i,] + 5              # bad leverage points[坏的平衡点]

## estimate smallest value of the penalty parameter [#估计值最小的惩罚参数]
## that sets all coefficients to 0[#设置所有的系数为0]
lambda0(x, y)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 12:40 , Processed in 0.021857 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表