找回密码
 注册
查看: 450|回复: 0

R语言 robustbase包 Qn()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 22:14:02 | 显示全部楼层 |阅读模式
Qn(robustbase)
Qn()所属R语言包:robustbase

                                        Robust Location-Free Scale Estimate More Efficient than MAD
                                         鲁棒位置的规模测算的效率比MAD

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Compute the robust scale estimator Qn, an efficient alternative to the MAD.
强大的规模计算,估计Qn,一个有效的替代的MAD。

See the references for more.
更多的参考。


用法----------Usage----------


Qn(x, constant = 2.21914, finite.corr = missing(constant))

s_Qn(x, mu.too = FALSE, ...)



参数----------Arguments----------

参数:x
numeric vector of observations.
数字观测向量。


参数:constant
number by which the result is multiplied; the default achieves consistency for normally distributed data.  Note that until Nov. 2010, &ldquo;thanks&rdquo; to a typo in the very first papers, a slightly wrong default constant, 2.2219, was used instead of the correct one which is equal to 1 / (sqrt(2) * qnorm(5/8)).  If you need the old slightly off version for historical reproducibility, you can use Qn.old().  Note that the relative difference is only about 1 in 1000, and that the correction should not affect the finite sample corrections for n <= 9.  
号码的结果乘以默认的实现为正态分布的数据的一致性。请注意,直到2010年11月,“感谢”一个错字在第一篇论文中,稍有错误的默认不变,2.2219,是用来代替等于1 / (sqrt(2) * qnorm(5/8))这是正确的。如果你需要老版本稍微偏离历史的重现性,你可以使用Qn.old()。需要注意的是相对不同的是1000年大约只有1,修正不应该影响有限样本的修正n <= 9。


参数:finite.corr
logical indicating if the finite sample bias correction factor should be applied.  Defaults to TRUE unless constant is specified.
逻辑表明,如果在有限样本偏差校正系数应适用。默认为TRUE除非constant指定。


参数:mu.too
logical indicating if the median(x) should also be returned for s_Qn().
逻辑说明,如果median(x)也应该返回s_Qn()。


参数:...
potentially further arguments for s_Qn() passed to Qn().
有可能进一步参数为s_Qn()传递给Qn()。


Details

详细信息----------Details----------

As the (default, consistency) constant needed to be corrected, the finite sample correction has been based on a much more extensive simulation, and on a 3rd or 4th degree polynomial model in 1/n for odd or even n, respectively.
(默认情况下,一致性)需要纠正的常数,是根据有限样本校正在更广泛的模拟,在1/n为奇数或偶数n,分别在第三或第四次多项式模型。


值----------Value----------

Qn() returns a number, the Qn robust scale estimator, scaled to be consistent for &sigma;^2 and i.i.d. Gaussian observatsions, optionally bias corrected for finite samples.
Qn()返回一个数字,Qn强大的规模估计,按比例是一致的&sigma;^2和IID高斯observatsions,选择偏压校正有限样本。

s_Qn(x, mu.too=TRUE) returns a length-2 vector with location (&mu;) and scale; this is typically only useful for covOGK(*, sigmamu = s_Qn).
s_Qn(x, mu.too=TRUE)返回一个长度为2个向量的位置(&mu;)和规模,这是典型的只适用于covOGK(*, sigmamu = s_Qn)。


(作者)----------Author(s)----------


Original Fortran code:
Christophe Croux and Peter Rousseeuw <a href="mailto:rousse@wins.uia.ac.be">rousse@wins.uia.ac.be</a>.
<br>
Port to C and R: Martin Maechler, <a href="mailto:maechler@R-project.org">maechler@R-project.org</a>




参考文献----------References----------

Alternatives to the Median Absolute Deviation, Journal of the American Statistical Association 88, 1273&ndash;1283.
Time-Efficient Algorithms for Two Highly Robust Estimators of Scale, Computational Statistics, Vol. 1, ed. Dodge and Whittaker, Physica-Verlag Heidelberg, 411&ndash;428;<br> also available from http://win-www.uia.ac.be/u/statis/abstract/Timeff92.htm.

参见----------See Also----------

mad for the "most robust" but much less efficient scale estimator; Sn for a similar faster but less efficient alternative; scaleTau2.
mad“最强大”,但估计要少得多有效规模; Sn一个类似的快,但效率较低的替代品,“scaleTau2。


实例----------Examples----------


set.seed(153)
x <- sort(c(rnorm(80), rt(20, df = 1)))
s_Qn(x, mu.too = TRUE)
Qn(x, finite.corr = FALSE)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-25 09:58 , Processed in 0.024070 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表