pfa(robCompositions)
pfa()所属R语言包:robCompositions
Factor analysis for compositional data
成分数据的因子分析
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Computes the principal factor analysis of the input data which are transformed and centered first.
计算第一变换和居中的输入数据的主要因素分析。
用法----------Usage----------
pfa(x, factors, data = NULL, covmat = NULL, n.obs = NA,
subset, na.action, start = NULL,
scores = c("none", "regression", "Bartlett"),
rotation = "varimax", maxiter = 5, control = NULL, ...)
参数----------Arguments----------
参数:x
(robustly) scaled input data
(强劲)换算后的输入数据
参数:factors
number of factors
若干因素
参数:data
default value is NULL
默认值是NULL
参数:covmat
(robustly) computed covariance or correlation matrix
(强劲)计算协方差或相关系数矩阵
参数:n.obs
number of observations
的观测数
参数:subset
if a subset is used
如果使用了一个子集
参数:na.action
what to do with NA values
做什么用NA值
参数:start
starting values
初始值
参数:scores
which method should be used to calculate the scores
该方法应该被用来计算分数
参数:rotation
if a rotation should be made
如果应作出的旋转
参数:maxiter
maximum number of iterations
最大迭代次数
参数:control
default value is NULL
默认值是NULL
参数:...
arguments for creating a list
参数创建一个列表
Details
详细信息----------Details----------
The main difference to usual implementations is that uniquenesses are nor longer of diagonal form. This kind of factor analysis is designed for centered log-ratio transformed compositional data. However, if the covariance is not specified, the covariance is estimated from isometric log-ratio transformed data internally, but the data used for factor analysis are backtransformed to the clr space (see Filzmoser et al., 2009).
通常实现的主要区别是,独特性也不再对角形式。这种因子分析是专为中心的对数比转换成分数据。然而,如果还没有指定的协方差,协方差估计从等角数比变换后的数据在内部,但所使用的数据进行因子分析的clr空间逆转换(见Filzmoser等人,2009)。
值----------Value----------
参数:loadings
A matrix of loadings, one column for each factor. The factors are ordered in decreasing order of sums of squares of loadings.
矩阵的每个因素的负荷,一列。的因素是有序的,在降低订购平方装载的款项。
参数:uniquness
uniquness
uniquness
参数:correlation
correlation matrix
相关矩阵
参数:criteria
The results of the optimization: the value of the negativ log-likelihood and information of the iterations used.
优化的结果:的值的负面的对数似然和信息使用的迭代。
参数:factors
the factors
因素
参数:dof
degrees of freedom
自由度
参数:method
“principal”
“本金”
参数:n.obs
number of observations if available, or NA
数目的观察(如果可用)或NA
参数:call
The matched call.
匹配的呼叫。
参数:STATISTIC, PVAL
The significance-test statistic and p-value, if they can be computed
的显着性检验统计量和p值,如果他们可以计算
(作者)----------Author(s)----------
Peter Filzmoser, Karel Hron, Matthias Templ
参考文献----------References----------
Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, 2008.
Computers and Geosciences, 35 (9), 1854–1861.
实例----------Examples----------
data(expenditures)
x <- expenditures
res0 <- pfa(x, factors=1, covmat="cov")
## the following produce always the same result:[#以下产生相同的结果:]
res1 <- pfa(x, factors=1, covmat="covMcd")
res2 <- pfa(x, factors=1, covmat=covMcd(ilr(x))$cov)
res3 <- pfa(x, factors=1, covmat=covMcd(ilr(x)))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|