daFisher(robCompositions)
daFisher()所属R语言包:robCompositions
Discriminant analysis by Fisher Rule.
判别分析的费舍尔规则。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Discriminant analysis by Fishers rule.
渔民的规则判别分析。
用法----------Usage----------
daFisher(x, grp, coda = TRUE, method = "classical", plotScore=FALSE)
参数----------Arguments----------
参数:x
a matrix or data frame containing the explanatory variables (training set)
矩阵或数据框包含的解释变量(训练集)
参数:grp
grouping variable: a factor specifying the class for each observation.
分组变量:指定一个类为每个观测的一个因素。
参数:coda
TRUE, when the underlying data are compositions.
TRUE,当基础数据的组合物。
参数:method
“classical” or “robust”
“古典”或“健壮”
参数:plotScore
TRUE, if the scores should be plotted automatically.
TRUE时,如果分数应绘制自动。
Details
详细信息----------Details----------
The Fisher rule leads only to linear boundaries. However, this method allows for dimension reduction and thus for a better visualization of the separation boundaries. For the Fisher discriminant rule (Fisher, 1938; Rao, 1948) the assumption of normal distribution of the groups is not explicitly required, although the method looses its optimality in case of deviations from normality.
39的费舍尔规则只会导致线性边界。然而,该方法允许降维,从而为一个更好的可视化的分离边界。 Fisher判别规则(1938年费舍尔,饶,1948年)正态分布的假设的群体没有明确要求,在偏离正常的情况下,该方法虽然失去其最优。
The classical Fisher discriminant rule is invariant to ilr and clr transformations. The robust rule is invariant to ilr transformations if affine equivariant robust estimators of location and covariance are taken.
经典的Fisher判别规则是不变的劳资关系和CLR转换。如果仿射同变的位置和协方差的稳健估计的,强大的规则是不变的劳资关系转换。
Robustification is done (method “robust”) by estimating the columnwise means and the covariance by the Minimum Covariance Estimator.
Robustification是纵列方式和最小方差协方差估计的估计(方法“稳健”)。
值----------Value----------
an object of class “daFisher” including the following elements
对象类“daFisher”,包括以下要素
参数:B
Between variance of the groups
的基团之间的方差
参数:W
Within variance of the groups
方差的基团内
参数:loadings
loadings
负荷
参数:coda
coda
尾声
(作者)----------Author(s)----------
The code is was written by Peter Filzmoser. Minor modifications by Matthias Templ.
参考文献----------References----------
and robust parameter estimation. Research Report SM-2009-3, Vienna University of Technology, 27 pages.
Journal of the Royal Statistical Society, Series B, 10:159-203.
参见----------See Also----------
Linda
Linda
实例----------Examples----------
require(MASS)
x1 <- mvrnorm(20,c(0,0,0),diag(3))
x2 <- mvrnorm(30,c(3,0,0),diag(3))
x3 <- mvrnorm(40,c(0,3,0),diag(3))
X <- rbind(x1,x2,x3)
grp=c(rep(1,20),rep(2,30),rep(3,40))
#par(mfrow=c(1,2))[面值(mfrow = C(1,2))]
d1 <- daFisher(X,grp=grp,method="classical",coda=FALSE)
d2 <- daFisher(X,grp=grp,method="robust",coda=FALSE)
d2
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|