找回密码
 注册
查看: 389|回复: 0

R语言 RobAStBase包 getBiasIC()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 19:52:57 | 显示全部楼层 |阅读模式
getBiasIC(RobAStBase)
getBiasIC()所属R语言包:RobAStBase

                                        Generic function for the computation of the asymptotic bias for an IC
                                         用于IC的渐近偏差计算的通用函数

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

Generic function for the computation of the asymptotic bias for an IC.
泛型函数为计算用于IC的渐近偏置。


用法----------Usage----------


getBiasIC(IC, neighbor, ...)

## S4 method for signature 'IC,UncondNeighborhood'
getBiasIC(IC, neighbor, L2Fam, biastype = symmetricBias(),
             normtype = NormType(), tol = .Machine$double.eps^0.25, numbeval = 1e5)



参数----------Arguments----------

参数:IC
object of class "InfluenceCurve"
对象的类"InfluenceCurve"


参数:neighbor
object of class "Neighborhood".
对象类"Neighborhood"。


参数:...
additional parameters
额外的参数


参数:L2Fam
object of class "L2ParamFamily".
对象类"L2ParamFamily"。


参数:biastype
object of class "BiasType"
对象的类"BiasType"


参数:normtype
object of class "NormType"
对象的类"NormType"


参数:tol
the desired accuracy (convergence tolerance).
所需的精度(收敛宽容)。


参数:numbeval
number of evalation points.
数量的evalation点。


值----------Value----------

The bias of the IC is computed.
计算的IC的偏压。


方法----------Methods----------

  


IC = "IC", neighbor = "UncondNeighborhood" determines the as. bias by random evaluation of the IC; this random evaluation is done by the internal S4-method .evalBiasIC; this latter dispatches according to the signature IC, neighbor, biastype.<br> For signature IC="IC", neighbor = "ContNeighborhood", biastype = "BiasType", also an argument normtype is used to be able to use self- or information standardizing norms; besides this the signatures IC="IC", neighbor = "TotalVarNeighborhood", biastype = "BiasType", IC="IC", neighbor = "ContNeighborhood", biastype = "onesidedBias", and IC="IC", neighbor = "ContNeighborhood", biastype = "asymmetricBias" are implemented.   
IC =“IC”,邻居“UncondNeighborhood”,决定作为。偏见的IC随机评价;随机评估是由内部S4方法.evalBiasIC;后者调度的签名IC, neighbor, biastype。<BR>对签名IC="IC", neighbor = "ContNeighborhood", biastype = "BiasType",也参数normtype能够使用自我或信息标准化规范,除了这个签名IC="IC", neighbor = "TotalVarNeighborhood", biastype = "BiasType",IC="IC", neighbor = "ContNeighborhood", biastype = "onesidedBias"和IC="IC", neighbor = "ContNeighborhood", biastype = "asymmetricBias"来实现。


注意----------Note----------

This generic function is still under construction.
这个通用的功能尚在建设中。


(作者)----------Author(s)----------


Peter Ruckdeschel <a href="mailtoeter.Ruckdeschel@itwm.fraunhofer.de">eter.Ruckdeschel@itwm.fraunhofer.de</a>



参考文献----------References----------

Huber, P.J. (1968) Robust Confidence Limits. Z. Wahrscheinlichkeitstheor. Verw. Geb. 10:269&ndash;278.
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106&ndash;115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
Ruckdeschel, P. and Kohl, M. (2005) Computation of the Finite Sample Bias of M-estimators on Neighborhoods.

参见----------See Also----------

getRiskIC-methods, InfRobModel-class
getRiskIC-methods,InfRobModel-class

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-24 20:51 , Processed in 0.020419 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表