找回密码
 注册
查看: 624|回复: 0

R语言 Rmixmod包 mixmodStrategy()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-9-27 00:05:37 | 显示全部楼层 |阅读模式
mixmodStrategy(Rmixmod)
mixmodStrategy()所属R语言包:Rmixmod

                                        Create an instance of [<a href="Strategy-class.html">Strategy</a>] class
                                         创建一个实例[<a href="Strategy-class.html">策略</ A>]类

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This class will contain all the parameters needed by the estimation algorithms.
这个类将包含所有需要的参数估计算法。


用法----------Usage----------


  mixmodStrategy(algo = "EM", nbTry = 1,
    initMethod = "smallEM", nbTryInInit = 50,
    nbIterationInInit = 5, nbIterationInAlgo = 200,
    epsilonInInit = 0.001, epsilonInAlgo = 0.001)



参数----------Arguments----------

参数:algo
list of character string with the estimation algorithm.  Possible values: "EM", "SEM", "CEM", c("EM","SEM"). Default value is "EM".
估计算法的字符串列表。可能的值:“EM”,“SEM”,“CEM”角(“EM”,“SEM”)。默认值是“EM”。


参数:nbTry
integer defining the number of tries. nbTry must be a positive integer. Option available only if init is "random" or "smallEM" or "CEM" or "SEMMax". Default value: 1.
整数数定义尝试。 nbTry必须是一个正整数。如果init是“随机”或“smallEM”或“CEM”或“SEMMax”选项只。默认值:1。


参数:initMethod
a character string with the method of initialization of the algorithm specified in the algo argument. Possible values: "random", "smallEM", "CEM", "SEMMax". Default value: "smallEM".
一个字符串的方法algo参数指定的算法的初始化。可能的值:“随机”,“smallEM”,“CEM”中,“SEMMax”。默认值:smallEM“。


参数:nbTryInInit
integer defining number of tries in initMethod algorithm. nbTryInInit must be a positive integer. Option available only if init is "smallEM" or "CEM". Default value: 50.
整数定义的尝试次数在initMethod算法。 nbTryInInit必须是一个正整数。选项仅当init是的“smallEM”或“CEM”。默认值:50。


参数:nbIterationInInit
integer defining the number of "EM" or "SEM" iterations in initMethod. nbIterationInInit must be a positive integer. Only available if initMethod is "smallEM" or "SEMMax". Default values: 5 if initMethod is "smallEM" and 100 if initMethod is "SEMMax".
整数,定义“EM”或“SEM”迭代initMethod。 nbIterationInInit必须是一个正整数。仅当initMethod是“smallEM”或“SEMMax的。如果默认值:5initMethod是的“smallEM”,如果100 initMethod是“SEMMax”,。


参数:nbIterationInAlgo
list of integers defining the number of iterations if you want to use nbIteration as rule to stop the algorithm(s). Default value: 200.
列表中定义的迭代次数的情况,如果你想使用nbIteration作为停止规则的算法()的整数。默认值:200。


参数:epsilonInInit
real defining the epsilon value in the initialization step. Only available if initMethod is "smallEM". Default value: 0.001.
真正在初始化步骤中定义的ε值。仅显示有空房,如果initMethod是“smallEM”,。默认值:0.001。


参数:epsilonInAlgo
list of reals defining the epsilon value for the algorithm. Warning: epsilonInAlgo doesn't have any sens if algo is SEM, so it needs to be set as NaN in that case. Default value: 0.001.
列表实数定义epsilon值的算法。注意:如果algo是扫描电镜(SEM),所以在这种情况下,它需要被设置为NaN的,,没有任何epsilonInAlgo传感。默认值:0.001。


Details

详细信息----------Details----------

There are different ways to initialize an algorithm :
有不同的方法来初始化一个算法:




random Initialization from a random position is a standard way to initialize an algorithm. This random initial position is obtained by choosing at random centers in the data set. This simple strategy is repeated 5 times (the user can choose the number of times) from different random positions and the position that
随机初始化一个随机的位置,是一个标准的方法来初始化一个算法。这种随机的初始位置是通过选择在随机的数据集合中的中心而获得的。重复这个简单的策略5的的时间(用户可以选择的次数)从不同的随机位置和位置,




smallEM A maximum of 50 iterations of the EM algorithm according to the process : n_i numbers of iterations of EM are done (with random initialization) until the smallEM stop criterion value has been reached.  This action is repeated until the sum of n_i
smallEM最多50迭代的EM算法进行的过程:n_i次EM数进行随机初始化,直到smallEM停止标准值已达到。重复此动作直到n_i的总和

reaches 50 iterations (or if in one action 50 iterations are reached before the stop criterion value).\ It appears that repeating runs of EM is generally profitable since using a single run of EM can
达到50迭代(或者如果在一个动作中50的迭代之前达到的停止标准值)。\看来,重复运行的EM是有利可图的,因为EM可以使用一个单一的运行




CEM 10 repetitions of 50 iterations of the CEM algorithm are done.  One advantage of initializing an algorithm with CEM lies in the fact that CEM converges generally in a small number of iterations. Thus, without consuming a large amount of CPU times, several runs of CEM are performed. Then EM is run with
CEM 1050的CEM算法的迭代重复进行。初始化一个与CEM算法的一个优点在于在CEM的事实,即一般在一个小的迭代次数收敛。因此,不消耗大量的CPU时间的情况下,几个运行的CEM被执行。然后EM运行




SEMMax A run of 500 iterations of SEM. The idea is that an SEM sequence is expected to enter rapidly in the neighbourhood of the global maximum of the
SEMMax一个运行500迭代的SEM。这个想法是,预期的SEM序列迅速进入附近的全局最大

Defining the algorithms used in the strategy, the
定义的策略中使用的算法,

Algorithms :
算法:




EM Expectation
EM期望

  


CEM Classification EM
CEM分类EM




SEM Stochastic EM
SEM随机EM

Stopping rules for the
停止规则




nbIterationInAlgo Sets the
nbIterationInAlgo设置

  


epsilonInAlgo Sets
epsilonInAlgo设置

Default values are 200 nbIterationInAlgo of EM with an
默认值是200nbIterationInAlgo的EM


值----------Value----------

a [Strategy] object
一个[Strategy方向]对象


(作者)----------Author(s)----------



Remi Lebret and Serge Iovleff and Florent Langrognet,
with contributions from C. Biernacki and G. Celeux and G.
Govaert <a href="mailto:contact@mixmod.org">contact@mixmod.org</a>




参考文献----------References----------

starting values for the EM algorithm for getting the highest likelihood in multivariate gaussian mixture models". Computational Statistics and Data Analysis 41, 561-575.

实例----------Examples----------


mixmodStrategy()
   mixmodStrategy(algo="CEM",initMethod="random",nbTry=10,epsilonInInit=0.00001)
   mixmodStrategy(algo=c("SEM","EM"), nbIterationInAlgo=c(200,100), epsilonInAlgo=c(NA,0.000001))

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2024-11-24 05:01 , Processed in 0.025572 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表