HoltWinters(stats)
HoltWinters()所属R语言包:stats
Holt-Winters Filtering
霍尔特 - 温特斯过滤
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Computes Holt-Winters Filtering of a given time series. Unknown parameters are determined by minimizing the squared prediction error.
霍尔特 - 温特斯计算一个给定的时间序列筛选。未知参数的最小平方预测误差决定。
用法----------Usage----------
HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL,
seasonal = c("additive", "multiplicative"),
start.periods = 2, l.start = NULL, b.start = NULL,
s.start = NULL,
optim.start = c(alpha = 0.3, beta = 0.1, gamma = 0.1),
optim.control = list())
参数----------Arguments----------
参数:x
An object of class ts
一个对象的类ts
参数:alpha
alpha parameter of Holt-Winters Filter.
alpha霍尔特 - 温特斯过滤参数。
参数:beta
beta parameter of Holt-Winters Filter. If set to FALSE, the function will do exponential smoothing.
beta霍尔特 - 温特斯过滤参数。如果设置为FALSE,该函数将做指数平滑。
参数:gamma
gamma parameter used for the seasonal component. If set to FALSE, an non-seasonal model is fitted.
gamma参数用于季节性组件的。如果设置为FALSE,非季节性模型拟合。
参数:seasonal
Character string to select an "additive" (the default) or "multiplicative" seasonal model. The first few characters are sufficient. (Only takes effect if gamma is non-zero).
字符串选择"additive"(默认)或"multiplicative"季节性模式。前几个字符就足够了。 (仅如果gamma是非零)生效。
参数:start.periods
Start periods used in the autodetection of start values. Must be at least 2.
开始在初始值的自动检测使用的时期。必须至少有2。
参数:l.start
Start value for level (a[0]).
启动值水平([0])。
参数:b.start
Start value for trend (b[0]).
启动趋势值(B [0])。
参数:s.start
Vector of start values for the seasonal component (s_1[0] … s_p[0])
季节性分量的初始值向量(s_1[0] … s_p[0])
参数:optim.start
Vector with named components alpha, beta, and gamma containing the starting values for the optimizer. Only the values needed must be specified. Ignored in the one-parameter case.
向量命名的组件alpha,beta,gamma包含优化的初始值。必须指定唯一需要的值。在一个参数的情况下忽略。
参数:optim.control
Optional list with additional control parameters passed to optim if this is used. Ignored in the one-parameter case.
与其他控制参数的可选列表传递optim的如果这是使用。在一个参数的情况下忽略。
Details
详情----------Details----------
The additive Holt-Winters prediction function (for time series with period length p) is
添加剂霍尔特 - 温特斯预测功能(时间周期长度P系列)
where a[t], b[t] and s[t] are given by
a[t],b[t]和s[t]是由
The multiplicative Holt-Winters prediction function (for time series with period length p) is
乘霍尔特 - 温特斯预测功能(时间周期长度P系列)
where a[t], b[t] and s[t] are given by
a[t],b[t]和s[t]是由
The data in x are required to be non-zero for a multiplicative model, but it makes most sense if they are all positive.
x数据必须是非零乘法模型,但它最有意义,如果他们都是积极的。
The function tries to find the optimal values of α and/or β and/or γ by minimizing the squared one-step prediction error if they are NULL (the default). optimize will be used for the single-parameter case, and optim otherwise.
函数试图找到α和/或β和/或γ最小平方一步预测误差的最佳值,如果他们是NULL(默认)。 optimize将用于单参数的情况下,optim否则。
For seasonal models, start values for a, b and s are inferred by performing a simple decomposition in trend and seasonal component using moving averages (see function decompose) on the start.periods first periods (a simple linear regression on the trend component is used for starting level and trend.). For level/trend-models (no seasonal component), start values for a and b are x[2] and x[2] - x[1], respectively. For level-only models (ordinary exponential smoothing), the start value for a is x[1].
对于季节性模式,开始a,b和s是通过执行一个简单趋势和季节成分的分解,使用均线推断(见功能decompose)值start.periods(一个简单的线性回归的趋势分量的水平和趋势开始使用。)第一期。 (无季节性的组成部分),水平/趋势模型开始a和b是x[2]和x[2] - x[1],分别值。对于水平只模型(普通指数平滑),起始值为a是x[1]。
值----------Value----------
An object of class "HoltWinters", a list with components:
一个对象的类"HoltWinters",一个组件的列表:
参数:fitted
A multiple time series with one column for the filtered series as well as for the level, trend and seasonal components, estimated contemporaneously (that is at time t and not at the end of the series).
一个多的时间序列与一列过滤系列,以及为水平,趋势和季节性的组成部分,估计contemporaneously(这是在时间t系列的结尾)。
参数:x
The original series
原系列
参数:alpha
alpha used for filtering
阿尔法用于过滤
参数:beta
beta used for filtering
测试使用的过滤
参数:gamma
gamma used for filtering
伽玛用于过滤
参数:coefficients
A vector with named components a, b, s1, ..., sp containing the estimated values for the level, trend and seasonal components
命名组件的向量a, b, s1, ..., sp含有的水平,趋势和季节性组件的估计值
参数:seasonal
The specified seasonal parameter
指定seasonal参数
参数:SSE
The final sum of squared errors achieved in optimizing
最后一笔的平方误差达到优化
参数:call
The call used
使用呼叫
作者(S)----------Author(s)----------
David Meyer <a href="mailtoavid.Meyer@wu.ac.at">David.Meyer@wu.ac.at</a>
参考文献----------References----------
Forecasting trends and seasonals by exponentially weighted moving averages, ONR Research Memorandum, Carnegie Institute of Technology 52.
Forecasting sales by exponentially weighted moving averages, Management Science 6, 324–342.
参见----------See Also----------
predict.HoltWinters, optim.
predict.HoltWinters,optim。
举例----------Examples----------
require(graphics)
## Seasonal Holt-Winters[#季节性霍尔特 - 温特斯]
(m <- HoltWinters(co2))
plot(m)
plot(fitted(m))
(m <- HoltWinters(AirPassengers, seasonal = "mult"))
plot(m)
## Non-Seasonal Holt-Winters[#非季节性霍尔特 - 温特斯]
x <- uspop + rnorm(uspop, sd = 5)
m <- HoltWinters(x, gamma = FALSE)
plot(m)
## Exponential Smoothing[#指数平滑]
m2 <- HoltWinters(x, gamma = FALSE, beta = FALSE)
lines(fitted(m2)[,1], col = 3)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|