multinom(nnet)
multinom()所属R语言包:nnet
Fit Multinomial Log-linear Models
符合多项对数线性模型
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Fits multinomial log-linear models via neural networks.
适用于多项对数线性模型,通过神经网络。
用法----------Usage----------
multinom(formula, data, weights, subset, na.action,
contrasts = NULL, Hess = FALSE, summ = 0, censored = FALSE,
model = FALSE, ...)
参数----------Arguments----------
参数:formula
a formula expression as for regression models, of the form response ~ predictors. The response should be a factor or a matrix with K columns, which will be interpreted as counts for each of K classes. A log-linear model is fitted, with coefficients zero for the first class. An offset can be included: it should be a numeric matrix with K columns if the response is either a matrix with K columns or a factor with K > 2 classes, or a numeric vector for a response factor with 2 levels. See the documentation of formula() for other details.
回归模型,公式表达的形式response ~ predictors。该反应应该是与K列,每个K类的计数将被解释为一个因素或矩阵。对数线性模型拟合的系数为零,第一类。的偏移量,可以包括:如果响应是与K列的矩阵或与K> 2类的因素,或2级的响应因子与一个数值向量,它应该是一个数字与K列的矩阵。请参阅文档formula()其他细节。
参数:data
an optional data frame in which to interpret the variables occurring in formula.
一个可选的数据框,其中解释的变量发生在formula。
参数:weights
optional case weights in fitting.
可选的情况下,权重装修。
参数:subset
expression saying which subset of the rows of the data should be used in the fit. All observations are included by default.
表达说应在适合使用的哪个子集的行的数据。默认情况下,所有的观测。
参数:na.action
a function to filter missing data.
一个函数来筛选丢失的数据。
参数:contrasts
a list of contrasts to be used for some or all of the factors appearing as variables in the model formula.
要用于出现的因素作为模型公式中的变量的一些或所有的列表对比。
参数:Hess
logical for whether the Hessian (the observed/expected information matrix) should be returned.
逻辑是否黑森州(观察/预期的信息矩阵)应返回。
参数:summ
integer; if non-zero summarize by deleting duplicate rows and adjust weights. Methods 1 and 2 differ in speed (2 uses C); method 3 also combines rows with the same X and different Y, which changes the baseline for the deviance.
整数,如果通过删除重复行的非零总结和调整权重。方法1和2的速度不同(2使用C);方法3还结合行使用相同的X和Y,改变基线的偏差。
参数:censored
If Y is a matrix with K > 2 columns, interpret the entries as one for possible classes, zero for impossible classes, rather than as counts.
如果Y是一个矩阵K > 2列,作为一个可能的类,零不可能类的条目解释,而不是计数。
参数:model
logical. If true, the model frame is saved as component model of the returned object.
逻辑。如果为true,该模型帧保存为组件model返回的对象。
参数:...
additional arguments for nnet </table>
附加参数为nnet</ TABLE>
Details
详细信息----------Details----------
multinom calls nnet. The variables on the rhs of the formula should be roughly scaled to [0,1] or the fit will be slow or may not converge at all.
multinomnnet。公式右边的变量大致应扩展到[0,1]或适合将是缓慢的,或不收敛。
值----------Value----------
A nnet object with additional components:
Annet对象与其他组件:
参数:deviance
the residual deviance, compared to the full saturated model (that explains individual observations exactly). Also, minus twice log-likelihood.
剩余偏差,相比全饱和模型(即完全解释个人的观察)。此外,减去两倍的对数似然。
参数:edf
the (effective) number of degrees of freedom used by the model
(有效)的自由度数模型所使用的
参数:AIC
the AIC for this fit.
这适合AIC。
参数:Hessian
(if Hess is true).
(Hess如果是真实的)。
参数:model
(if model is true). </table>
(model如果是真实的)。 </ TABLE>
参考文献----------References----------
Modern Applied Statistics with S. Fourth edition. Springer.
参见----------See Also----------
nnet
nnet
实例----------Examples----------
options(contrasts = c("contr.treatment", "contr.poly"))
library(MASS)
example(birthwt)
(bwt.mu <- multinom(low ~ ., bwt))
## Not run: Call:[#不运行:检测:]
multinom(formula = low ~ ., data = bwt)
Coefficients:
(Intercept) age lwt raceblack raceother
0.823477 -0.03724311 -0.01565475 1.192371 0.7406606
smoke ptd ht ui ftv1 ftv2+
0.7555234 1.343648 1.913213 0.6802007 -0.4363238 0.1789888
Residual Deviance: 195.4755
AIC: 217.4755
## End(Not run)[#(不执行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|