找回密码
 注册
查看: 8584|回复: 0

R语言:lme()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-16 18:40:13 | 显示全部楼层 |阅读模式
lme(nlme)
lme()所属R语言包:nlme

                                        Linear Mixed-Effects Models
                                         线性混合效应模型

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This generic function fits a linear mixed-effects model in the formulation described in Laird and Ware (1982) but allowing for nested random effects. The within-group errors are allowed to be correlated and/or have unequal variances.
这个通用的功能,适合在制定线性混合效应模型描述莱尔德和Ware(1982),但允许嵌套的随机效果。允许相关组内的错误和/或有不平等的差异。


用法----------Usage----------


lme(fixed, data, random, correlation, weights, subset, method,
    na.action, control, contrasts = NULL, keep.data = TRUE)
## S3 method for class 'lme'
update(object, fixed., ..., evaluate = TRUE)



参数----------Arguments----------

参数:object
an object inheriting from class lme, representing a fitted linear mixed-effects model.
一个对象从lme类代表拟合的线性混合效应模型,继承。


参数:fixed
a two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a ~ operator and the terms, separated by + operators, on the right, an lmList object, or a groupedData object. The method functions lme.lmList and lme.groupedData are documented separately.
两个片面的线性公式对象的权利,描述固定效应模型的一部分,与上一个~运营商和条款+运营分开的,左侧的响应,一个 lmList对象,或groupedData对象。该方法的功能lme.lmList和lme.groupedData都记录分开。


参数:fixed.
Changes to the fixed-effects formula – see update.formula for details.
固定效应公式的变迁 - 看update.formula详情。


参数:data
an optional data frame containing the variables named in fixed, random, correlation, weights, and subset.  By default the variables are taken from the environment from which lme is called.
一个可选的数据框包含fixed命名的变量,random,correlation,weights,subset。默认情况下,从lme被称为环境变量。


参数:random
optionally, any of the following: (i) a one-sided formula of the form ~x1+...+xn | g1/.../gm, with x1+...+xn specifying the model for the random effects and g1/.../gm the grouping structure (m may be equal to 1, in which case no / is required). The random effects formula will be repeated for all levels of grouping, in the case of multiple levels of grouping; (ii) a list of one-sided formulas of the form ~x1+...+xn | g, with possibly different random effects models for each grouping level. The order of nesting will be assumed the same as the order of the elements in the list; (iii) a one-sided formula of the form ~x1+...+xn, or a pdMat object with a formula (i.e. a non-NULL value for formula(object)), or a list of such formulas or pdMat objects. In this case, the grouping structure formula will be derived from the data used to fit the linear mixed-effects model, which should inherit from class groupedData; (iv) a named list of formulas or pdMat objects as in (iii), with the grouping factors as names. The order of nesting will be assumed the same as the order of the order of the elements in the list; (v) an reStruct object. See the documentation on pdClasses for a description of the available pdMat classes. Defaults to a formula consisting of the right hand side of fixed.   
可选以下任:(一)片面的公式的形式~x1+...+xn | g1/.../gm,x1+...+xn指定模型的随机效应和g1/.../gm分组结构(<X >可能等于1,在这种情况下,没有m需要)。随机效应的公式将重复所有级别的分组,在分组的多层次的情况下;(ii)为每个分组形式/可能有不同的随机效应模型,片面的公式列表水平。嵌套的顺序将被假设为列表中的元素的顺序相同;(三)片面的公式与公式的形式~x1+...+xn | g或~x1+...+xn对象(即非pdMat值NULL),或如公式或formula(object)对象名单。在这种情况下,分组结构公式将来自用于拟合的线性混合效应模型的数据,应该继承类pdMat;(四)一个公式或groupedData对象的命名列表(三),作为名称的分组因素。嵌套的顺序将被假定为顺序列表中的元素的顺序相同;(V)pdMat的对象。可用reStruct类的描述,请参阅文件pdClasses。默认为公式右侧pdMat组成。


参数:correlation
an optional corStruct object describing the within-group correlation structure. See the documentation of corClasses for a description of the available corStruct classes. Defaults to NULL, corresponding to no within-group correlations.
一个可选的corStruct对象,它描述的组内相关结构。可用corClasses类的描述,请参阅文件corStruct。 NULL默认值,相应的组内没有相关。


参数:weights
an optional varFunc object or one-sided formula describing the within-group heteroscedasticity structure. If given as a formula, it is used as the argument to varFixed, corresponding to fixed variance weights. See the documentation on varClasses for a description of the available varFunc classes. Defaults to NULL, corresponding to homoscedastic within-group errors.  
一个可选的varFunc对象或片面的公式描述组内异方差结构。如果给出一个公式,它是用来作为的varFixed,相应的固定方差权重的参数。可用varClasses类的描述,请参阅文件varFunc。默认NULL,对应于同方差组内的错误。


参数:subset
an optional expression indicating the subset of the rows of data that should be used in the fit. This can be a logical vector, or a numeric vector indicating which observation numbers are to be included, or a  character  vector of the row names to be included.  All observations are included by default.
一个可选的表达式表示data,应适合使用的行的子集。这可以是一个逻辑向量,或一个数字的向量,被列入观察数字或字符向量的行名被列入。所有的意见,包括默认情况下。


参数:method
a character string.  If "REML" the model is fit by maximizing the restricted log-likelihood.  If "ML" the log-likelihood is maximized.  Defaults to "REML".
一个字符串。如果"REML"模型适合最大限度地限制日志的可能性。如果"ML"日志的可能性最大化。 "REML"默认。


参数:na.action
a function that indicates what should happen when the data contain NAs.  The default action (na.fail) causes lme to print an error message and terminate if there are any incomplete observations.
一个函数,它表示数据时,包含NA的,应该发生什么。默认动作(na.fail)导致lme打印一个错误消息并终止,如果有任何不完整的意见。


参数:control
a list of control values for the estimation algorithm to replace the default values returned by the function lmeControl. Defaults to an empty list.
估计算法的控制值的列表来替换默认的返回值的函数lmeControl。默认为一个空列表。


参数:contrasts
an optional list. See the contrasts.arg of model.matrix.default.
可选列表。参见contrasts.argmodel.matrix.default。


参数:keep.data
logical: should the data argument (if supplied and a data frame) be saved as part of the model object?
逻辑:data参数(如果提供的数据框)作为模型对象的一部分保存?


参数:...
some methods for this generic require additional arguments.  None are used in this method.  
这个通用的一些方法需要额外的参数。没有使用这种方法。


参数:evaluate
If TRUE evaluate the new call else return the call.
如果TRUE评估新的呼叫,否则返回通话。


值----------Value----------

an object of class lme representing the linear mixed-effects model fit. Generic functions such as print, plot and summary have methods to show the results of the fit. See lmeObject for the components of the fit. The functions resid, coef, fitted, fixed.effects, and random.effects  can be used to extract some of its components.
一个类的对象lme代表线性混合效应模型拟合。通用功能,如print,plot和summary方法来显示合适的结果。看到lmeObject适合的组成部分。职能resid,coef,fitted,fixed.effects,random.effects可以用来提取其组成部分。


作者(S)----------Author(s)----------


Jose Pinheiro and Douglas Bates <a href="mailto:bates@stat.wisc.edu">bates@stat.wisc.edu</a>



参考文献----------References----------

and Bates (1988). The model formulation is described in Laird and Ware (1982).  The variance-covariance parametrizations are described in Pinheiro and Bates (1996).  The different correlation structures available for the <code>correlation</code> argument are described in Box, Jenkins and Reinse (1994), Littel et al (1996), and Venables and Ripley, (1997). The use of variance functions for linear and nonlinear mixed effects models is presented in detail in Davidian and Giltinan (1995).
Analysis: Forecasting and Control&quot;, 3rd Edition, Holden&ndash;Day.
for Repeated Measurement Data&quot;, Chapman and Hall.
Longitudinal Data&quot;, Biometrics, 38, 963&ndash;974.  
Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data&quot;, Journal of the American Statistical Association, 83, 1014&ndash;1022.
&quot;SAS Systems for Mixed Models&quot;, SAS Institute.
Parametrizations for Variance-Covariance Matrices&quot;, Statistics and Computing, 6, 289&ndash;296.
in S and S-PLUS&quot;, Springer.  
S&quot;, 4th Edition, Springer-Verlag.

参见----------See Also----------

corClasses, lme.lmList, lme.groupedData, lmeControl, lmeObject, lmeStruct, lmList, pdClasses, plot.lme, predict.lme, qqnorm.lme, residuals.lme, reStruct, simulate.lme, summary.lme, varClasses,  varFunc
corClasses,lme.lmList,lme.groupedData,lmeControl,lmeObject,lmeStruct,lmList,pdClasses,plot.lme,predict.lme,qqnorm.lme,residuals.lme,reStruct,simulate.lme,summary.lme,varClasses,varFunc


举例----------Examples----------


fm1 &lt;- lme(distance ~ age, data = Orthodont) # random is ~ age[随机是&#12316;岁]
fm2 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)
summary(fm1)
summary(fm2)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-24 01:24 , Processed in 0.024447 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表