|
采用牛顿法,求实系数高次代数方程
f(x)=a0xn+a1xn-1+…+an-1x+an=0 (an≠0 )
newton_1.m程序:
function y=newton_1(a,n,x0,nn,eps1)
x(1)=x0;
b=1;
i=1;
while(abs(b)>eps1*x(i))
i=i+1;
x(i)=x(i-1)-n_f(a,n,x(i-1))/n_df(a,n,x(i-1));
b=x(i)-x(i-1);
if(i>nn)error(ˊnn is fullˊ);
return;
end
end
y=x(i);
i
程序中调用的n_f.m和n_df.m文件如下:
function y=n_df(a,n,x)%方程一阶导数的函数
y=0.0;
for i=1:n
y=y+a(i)*(n+1-i)*x^(n-i);
end
function y=n_df(a,n,x)
y=0.0;
for i=1:n
y=y+a(i)*(n+1-i)*xˆ(n-i);
end
附注
(1)程序中调用n_f.m和n_df.m文件。n_f.m是待求根的实数代数方程的函数,n_df.m是方程一阶导数的函数。由使用者自己编写。
(2)牛顿迭代法的收敛速度:如果f(x)在零点附近存在连续的二阶微商,ξ是f(x)的一个重零点,且初始值x0充分接近于ξ,那么牛顿迭代是收敛的,其收敛速度是二阶的,即平方收敛速度。 |
|