tukey.add.test(asbio)
tukey.add.test()所属R语言包:asbio
Tukey's test of additivity.
Tukey检验的可加性。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
With an RBD we are testing the null hypothesis that there is no treatment effect in any block. As a result randomized block designs including RBDs, Latin Squares, and spherical repeated measures assume that there is no interaction effect between blocks and main factors (i.e. main effects and block are additive). We can test this assumption with the Tukey's test for additivity. We address the following hypotheses:
与RBD,我们正在测试的零假设,即在任何块中有没有治疗效果。因此,随机区组设计,包括可靠性框图,拉丁方,和球形重复的措施块和主要影响因素(即主效应和块添加剂)之间不存在互作效应。我们可以测试这个假设的Tukey检验的相加。我们解决以下假设:
H_0: Main effects and blocks are additive, versus H_A: Main effects and blocks are non-additive.
Ĥ_0:主要效果和块添加剂,与Ĥ_A:主要的影响,并阻止非添加剂。
用法----------Usage----------
tukey.add.test(y, A, B)
参数----------Arguments----------
参数:y
Response variable. Vector of quantitative data.
响应变量。矢量定量数据。
参数:A
Main effects. Generally a vector of categorical data.
主要的影响。一般来说,向量的分类数据。
参数:B
Blocking variable. A vector of categories (blocks).
阻止变量。一个向量类(块)。
Details
详细信息----------Details----------
Tukey's test for additivity is best for detecting simple block x treatment interactions; for instance, when lines in an interaction plot cross. As a result interaction plots should be used for diagnosis of other types of interactions. A high probability of type II error results from the inability Tukey's additivity test to detect complex interactions (Kirk 1995). As a result a conservative value of should be used, i.e. 0.1 - 0.25.
Tukey检验的相加是最好的,用于检测简单的块x的治疗相互作用,例如,当线在交互作用图交叉。作为一个结果交互作用图应用于诊断中的其他类型的相互作用。高概率的II型错误的结果无法Tukey的可加性测试,以检测复杂的相互作用(柯克1995年)。作为一个保守值,应使用0.1 - 0.25。
值----------Value----------
Returns a table with test results.
返回一个表,测试结果。
(作者)----------Author(s)----------
Orginal author unknown. Modified by K. Aho
参考文献----------References----------
实例----------Examples----------
treatment<-as.factor(c(36,54,72,108,144,36,54,72,108,144,36,54,72,108,144))
block<-as.factor(c(rep(1,5),rep(2,5),rep(3,5)))
strength<-c(7.62,8.14,7.76,7.17,7.46,8,8.15,7.73,7.57,7.68, 7.93,7.87,7.74, 7.8,7.21)
tukey.add.test(strength,treatment,block)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|