seqWithinNorm(stepNorm)
seqWithinNorm()所属R语言包:stepNorm
Sequential within-slide normalization function
连续的幻灯片内的标准化功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function conducts cDNA microarray normalization in a sequential fashion. In a two-color cDNA array setting, within-slide normalization calibrates signals from the two channels to remove non-biological variation introduced by various processing steps.
此功能在一个连续的方式进行cDNA微阵列标准化。在两色的cDNA阵列设置,幻灯片内标准化校准信号从两个渠道,删除非生物的变化推出不同的处理步骤。
用法----------Usage----------
seqWithinNorm(marraySet, y = "maM", subset = TRUE, loss.fun = square,
A = c("loess", "rlm", "median", "none"),
PT = c("median", "rlm", "loess", "none"),
PL = c("median", "rlm", "loess", "none"),
Spatial2D = c("none", "aov2D", "rlm2D", "loess2D", "spatialMedian"),
criterion = c("BIC", "AIC"))
参数----------Arguments----------
参数:marraySet
Object of class marrayRaw or class marrayNorm, containing intensity data for the batch of arrays to be normalized.
类marrayRaw或类对象marrayNorm为一批阵列,包含强度数据进行标准化。
参数:y
Name of accessor method for spot statistics, usually the log-ratio maM.
现货统计的存取方法,通常数比maM的名称。
参数:subset
A "logical" or "numeric" vector indicating the subset of points used to compute the normalization values.
“逻辑”或“数字”向量表示用来计算标准化值点的子集。
参数:loss.fun
The loss function used in calculating deviance, the default uses squared sum of residuals; for absolute sum of residuals, use abs
损失函数用于计算偏差,默认使用的残差平方和,残差绝对值总和,使用abs
参数:A
A character string specifying the normalization model for the adjustment of intensity or A bias:
一个字符串指定的强度调整或A偏见标准化模型:
loess: global intensity or A-dependent robust nonlinear normalization using the loess function
黄土:全球的强度或A依赖鲁棒非线性标准化使用loess函数
rlm: global intensity or A-dependent robust linear normalization using the rlm function
RLM:全球的强度或A依赖鲁棒线性标准化使用rlm函数
median: global median location normalization
中位数:全球中位数位置标准化
none: no normalization for the A bias If not specified, loess normalization will be applied.
无:无A如果没有指定的偏见,loess标准化将应用于标准化。
参数:PT
A character string specifying the normalization model for the adjustment of print-tip or PT bias:
一个字符串指定的打印头或PT偏置调整的标准化模型:
median: within-print-tip-group median normalization
中位数:在打印头组中位数标准化
rlm: within-print-tip-group robust linear normalization using the rlm function
RLM:内打印头组使用rlm函数的稳健线性标准化
loess: within-print-tip-group robust nonlinear normalization using the loess function
黄土:在打印头组使用loess功能的强大的非线性标准化
none: no normalization for the PT bias If not specified, median normalization within print-tip will be applied.
无:无PT如果没有指定的偏见,median打印头内的标准化将应用于标准化。
参数:PL
A character string specifying the normalization model for the adjustment of well-plate or PL bias:
一个字符串指定的调整以及板或PL偏见标准化模型:
median: within-well-plate median normalization
中位数:内板的中位数标准化
rlm: within-well-plate robust linear normalization using the rlm function
RLM:内板使用rlm功能强大的线性标准化
loess: within-well-plate robust nonlinear normalization using the loess function
黄土:在板使用loess功能的强大的非线性标准化
none: no normalization for the PL bias If not specified, median normalization within well-plate will be applied.
无:无PL如果没有指定的偏见,median内板的标准化将应用于标准化。
参数:Spatial2D
A character string specifying the normalization model for the adjustment of spatial 2D bias:
一个字符串指定的空间2D偏见调整为标准化模型:
none: no normalization for the spatial 2D bias
无没有空间2D偏见的标准化
aov2D: spatial bivariate location normalization using ANOVA
aov2D:二元空间位置标准化采用方差分析
rlm2D: spatial bivariate location normalization using the rlm function
二元rlm2D:空间位置使用rlm功能的标准化
loess2D: spatial bivariate location normalization using the loess function
二元loess2D:空间位置使用loess功能的标准化
spatialMedian: spatial location normalization using a spatial median approach (see Wilson et al. (2003) in reference) If not specified, no normalization will be carried out in this step.
spatialMedian:使用空间中位数的方法(见参考威尔逊等人(2003)。)如果没有指定,没有标准化将进行这一步的空间位置标准化。
参数:criterion
Character string specifying the criterion:
字符串指定的标准:
AIC:the AIC criterion is used; see calcAIC.
工商局:AIC准则;看到calcAIC。
BIC:the BIC criterion is used; see calcBIC. If no specification, BIC is used. Note that here we don't use the criterion to choose normalization model in each step. Criterion is calculated solely for informaion purpose.
BIC的:用BIC准则看到calcBIC。如果没有规范,BIC使用。请注意,在这里我们不使用标准选择模型的每一步标准化。标准计算仅informaion目的。
Details
详情----------Details----------
Typical systematic non-biological variations of a two-color cDNA microarray include the dependence of ratio measurements (M) on intensity (A), print-tip IDs (PT), plate IDs (PL) and spatial heterogeneity of the slide (Spatial 2D). The sequential normalization procedure in seqWithinNorm normalizes a slide in a sequential fashion: A -> PT -> PL -> Spatial2D. In each step one kind of variation is targeted for correction, and the user chooses the normalization method as desired. We calculate the AIC/BIC criterion along the normalization steps, but they are not used for selection of models.
典型系统的非生物的变化,两色的cDNA微阵列包括强度依赖比测量(男)(A),打印头的ID(PT),板块的ID(<X >)和幻灯片的空间异质性(二维空间)。在PL顺序标准化过程规范化幻灯片顺序的方式:seqWithinNorm - >A - >PT - > Spatial2D。一种变化中的每一步,是有针对性的改正,用户选择所需的规范化方法。我们沿着标准化的步骤计算的AIC / BIC的标准,但他们没有选择的车型使用。
值----------Value----------
An object of class "list":
一个对象类“列表”:
参数:normdata
an object of class marrayNorm, containing the normalized intensity data.
类marrayNorm的对象,包含归强度数据。
参数:res
a list of the sequential normalization result for each slide within the marray dataset. Each list component is also a list containing the name of the biases, deviance, equivalent number of parameters, AIC/BIC value for a certain slide.
顺序标准化的结果为每个幻灯片内marray数据集列表。每个列表组件也是一个列表,其中包含的偏差,偏差,同等数量的参数,AIC / BIC的某张幻灯片的价值的名称。
作者(S)----------Author(s)----------
Yuanyuan Xiao, <a href="mailto:yxiao@itsa.ucsf.edu">yxiao@itsa.ucsf.edu</a>, <br>
Jean Yee Hwa Yang, <a href="mailto:jean@biostat.ucsf.edu">jean@biostat.ucsf.edu</a>
参考文献----------References----------
for cDNA microarray data. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Vol. 4266 of Proceedings of SPIE.
(2003). New normalization methods for cDNA microarray data. Bioinformatics, Vol. 19, pp. 1325-1332.
参见----------See Also----------
stepWithinNorm, withinNorm, fitWithin, fit2DWithin,
stepWithinNorm,withinNorm,fitWithin,fit2DWithin
举例----------Examples----------
# Examples use swirl dataset, for description type ? swirl[例子使用漩涡集,描述的类型?漩涡]
data(swirl)
# Apply sequential normalization for the first slide[申请第一张幻灯片的顺序标准化]
# default: loess(A)->median(PT)->median(PL)-> none (Spatial2D)[默认是:(一)黄土 - >中位数(PT) - >中位数(PL) - >无(Spatial2D)]
## Not run: [#无法运行:]
res.swirl1 <- seqWithinNorm(swirl[,1])
# normalized data[规范化的数据]
norm.swirl <- res.swirl1[[1]]
# sequential normalization information[连续标准化信息]
step.swirl <- res.swirl1[[2]]
## End(Not run)[#结束(不运行)]
# median(A)->median(PT)->median(PL)->none(Spatial2D)[中位数(一) - >中位数(PT) - >中位数(PL) - >无(Spatial2D)]
res.swirl <- seqWithinNorm(swirl[,1], A="median",PT="median",PL="median",Spatial2D="none")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|