找回密码
 注册
查看: 888|回复: 0

R语言 Starr包 getMeans()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 15:08:25 | 显示全部楼层 |阅读模式
getMeans(Starr)
getMeans()所属R语言包:Starr

                                        Get mean ChIP-signal over annotated features
                                         获取平均注释功能的芯片信号

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

getMeans calculates the mean ChIP-signal over annotated features
getMeans注释功能,计算平均的芯片信号


用法----------Usage----------


getMeans(eSet, probeAnno, geneAnno, regions)



参数----------Arguments----------

参数:eSet
an ExpressionSet
1 ExpressionSet


参数:probeAnno
a probeAnno object for the given ExpressionSet
为给ExpressionSet probeAnno对象


参数:geneAnno
a data frame containing the annotation of the features of interest
一个数据框包含感兴趣的功能注释


参数: regions
a data frame, containing four columns. The pos columns is a character with values out of c("start", "region", "end"). upstream and downstream ar integers, indicating how many bases upstream and downstream from the specified position in the feature are included. level is an integer, that says at which level the rectangle in the lower device should be plotted. The numeration goes from the bottom to the ceiling. cor is the correlation of the region, which is plotted in the upper panel.   
一个数据框,其中包含四列。在POS列是一个字符c值(“开始”,“区域”,“结束”)。上游和下游的的AR整数,表示多少碱基的上游和下游,在指定位置的功能包括。 level是一个整数,说在哪个级别的矩形应绘制在较低的设备。在记数从底部到天花板。心病是该区域的相关性,这是在上游面板绘制。


值----------Value----------

a list. Each entry contains the mean signals over the specified regions (in the regions data frame) of all features in geneAnno.
一个列表。每个条目包含的所有功能geneAnno在指定的区域(在该区域的数据框)的平均信号。


作者(S)----------Author(s)----------


Benedikt Zacher <a href="mailto:zacher@lmb.uni-muenchen.de">zacher@lmb.uni-muenchen.de</a>



参见----------See Also----------

getProfiles
getProfiles


举例----------Examples----------


## [#]
# dataPath &lt;- system.file("extdata", package="Starr")[< - 。系统数据通路(的“extdata”,包=“斯塔尔”)]
# bpmapChr1 &lt;- readBpmap(file.path(dataPath, "Scerevisiae_tlg_chr1.bpmap"))[bpmapChr1 < -  readBpmap(file.path(数据通路,“Scerevisiae_tlg_chr1.bpmap”))]

# cels &lt;- c(file.path(dataPath,"Rpb3_IP_chr1.cel"), file.path(dataPath,"wt_IP_chr1.cel"), [CELS < -  C(file.path(数据通路,“Rpb3_IP_chr1.cel”),file.path(数据通路,“wt_IP_chr1.cel”),]
#         file.path(dataPath,"Rpb3_IP2_chr1.cel"))[file.path(数据通路,“Rpb3_IP2_chr1.cel”))]
# names &lt;- c("rpb3_1", "wt_1","rpb3_2")[名< - (“rpb3_1”,“wt_1”,“rpb3_2”)]
# type &lt;- c("IP", "CONTROL", "IP")[类型< -  C(“知识产权”,“控制”,“知识产权”)]
# rpb3Chr1 &lt;- readCelFile(bpmapChr1, cels, names, type, featureData=TRUE, log.it=TRUE)[rpb3Chr1 < -  readCelFile(bpmapChr1,CELS,名称,类型,featureData = TRUE,log.it = TRUE)]

# ips &lt;- rpb3Chr1$type == "IP"[IPS <费用 -  rpb3Chr1类型==“知识产权”]
# controls &lt;- rpb3Chr1$type == "CONTROL"[控制<“ -  rpb3Chr1 $ ==”控制“]

# rpb3_rankpercentile &lt;- normalize.Probes(rpb3Chr1, method="rankpercentile")[rpb3_rankpercentile < -  normalize.Probes(rpb3Chr1,方法=“rankpercentile”)]
# description &lt;- c("Rpb3vsWT")[说明< - &#199;(“Rpb3vsWT”)]
# rpb3_rankpercentile_ratio &lt;- getRatio(rpb3_rankpercentile, ips, controls, description, fkt=median, featureData=FALSE)[rpb3_rankpercentile_ratio < -  getRatio(rpb3_rankpercentile,IPS,控制,描述,FKT =中位数,featureData = FALSE)]

# probeAnnoChr1 &lt;- bpmapToProbeAnno(bpmapChr1)[probeAnnoChr1 < -  bpmapToProbeAnno(bpmapChr1的)]

# transcriptAnno &lt;- read.gffAnno(file.path(dataPath, "transcriptAnno.gff"), feature="transcript")[transcriptAnno < -  read.gffAnno(file.path功能=(数据通路,“transcriptAnno.gff”),“成绩单”)]
# filtered_orfs &lt;- filterGenes(transcriptAnno, distance_us = 0, distance_ds = 0, minLength = 1000)[filtered_orfs < -  filterGenes(transcriptAnno,distance_us = 0,= 0,minLength distance_ds = 1000)]

# pos &lt;- c("start", "start", "start", "region", "region","region","region", "stop","stop","stop")[POS < -  C(“开始”,“开始”,“开始”,“区域”,“区域”,“区域”,“区域”,“停止”,“停止”,“一站式”)]
# upstream &lt;- c(500, 0, 250, 0, 0, 500, 500, 500, 0, 250)[上游< -  C(500,0,250,0,0,500,500,500,0,250)]
# downstream &lt;- c(0, 500, 250, 0, 500, 0, 500, 0, 500, 250)[下游< -  C(0,500,250,0,500,0,500,0,500,250)]
# info &lt;- data.frame(pos=pos, upstream=upstream, downstream=downstream, stringsAsFactors=FALSE)[信息< - 数据框(POS = POS,上游=上游,下游的下游,stringsAsFactors为FALSE)]
# means_rpb3 &lt;- getMeans(rpb3_rankpercentile_ratio, probeAnnoChr1, transcriptAnno[which(transcriptAnno$name %in% filtered_orfs),], info)[means_rpb3 < -  getMeans(rpb3_rankpercentile_ratio,probeAnnoChr1,transcriptAnno [(的transcriptAnno $名称%%filtered_orfs)],INFO)]

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-23 13:13 , Processed in 0.034863 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表