createSignatures4TB(RTools4TB)
createSignatures4TB()所属R语言包:RTools4TB
Creates a set of transcriptional signatures from a microarray dataset.
建立了一套从芯片集的转录签名。
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function is a wrapper to create sets of transcriptional signatures (as in the TranscriptomeBrowser Project, TBrowser,http://tagc.univ-mrs.fr/tbrowser). This function creates a "cdt" file containing a set of expression matrices (transcriptional signatures) separated by blank lines. Please note that it requires both MCL and Cluster 3.0 (see 'warnings section'). It accepts both a matrix or file name as input.
此功能是创建一个包装转录签名集(在TranscriptomeBrowser项目,TBrowser,http://tagc.univ-mrs.fr/tbrowser)。这个函数创建一个“CDT”文件,其中包含的表达矩阵集(转录签名)由空行隔开。请注意,它需要MCL和聚类3.0(见“警告一节”)。它接受一个矩阵作为输入或文件名。
用法----------Usage----------
createSignatures4TB(data = NULL, filename = NULL, path = ".", name = NULL, normalization = c("rank", "gaussian", "quantiles", "none"),
distance.method = c("spearman", "pearson", "euclidean", "spm", "spgm"), silent = FALSE, verbose = TRUE, k = 150, random = 3, memory.used = 1024, fdr = 10,
inflation = 2.0, median.center = FALSE, set.seed = 123, returnRank = FALSE)
参数----------Arguments----------
参数:data
a matrix, data.frame or ExpressionSet object.
matrix,data.frame或ExpressionSet对象。
参数:filename
a character string representing the file name to load.
代表的文件名来加载一个字符串。
参数:path
a character string representing the data directory.
一个字符串,代表数据目录。
参数:name
a prefix for the name of the created files.
创建的文件的名称的前缀。
参数:normalization
indicates whether data should be normalized prior to analysis (see details).
指示数据是否应标准化之前的分析(见详情)。
参数:distance.method
a method to compute the distance to the k-th nearest neighbor. One of "pearson" (Pearson's correlation coefficient-based distance), "spearman" (Spearman's rho-based distance), "euclidean", "spm" or "spgm". Note that the "spm" distance corresponds to the arithmetic mean of pearson- and spearman-based distance : ("pearson"+"spearman")/2 whereas "spgm" computes their geometric mean : sqrt("pearson"*"spearman").
一种方法来计算距离的k个近邻。 “皮尔逊(Pearson相关系数为基础的距离)”,“矛”(斯皮尔曼的RHO基于距离),“欧几里德”,“SPM”或“spgm”之一。请注意,“SPM”的距离对应的算术平均皮尔森,和Spearman距离:(“培+”矛“)/ 2的”spgm“,而其几何平均数计算:SQRT(”培“ *“矛”)
参数:silent
if set to TRUE, the progression of distance matrix calculation is not displayed.
如果设置为TRUE,距离矩阵计算的进展将不会显示。
参数:verbose
if set to TRUE the function runs verbosely.
如果设置为TRUE,函数运行冗长。
参数:k
the neighborhood size.
附近的大小。
参数:random
the number of simulated distributions S to compute. By default random = 3.
模拟分布的数S计算。默认情况下random = 3。
参数:memory.used
size of the memory used to store part of the distance matrix. The subsequent sub-matrix is used to computed simulated distances to the k-th nearest neighbor (see detail section of DBFMCL function).
大小的内存用于存储距离矩阵的一部分。随后子矩阵是用来模拟计算距离的k个近邻(见DBFMCL功能的细节部分)。
参数:fdr
an integer value corresponding to the false discovery rate (range: 0 to 100).
一个整数值,对应的错误发现率(范围:0到100)。
参数:inflation
the main control of MCL. Inflation affects cluster granularity. It is usually chosen somewhere in the range [1.2-5.0]. inflation = 5.0 will tend to result in fine-grained clusterings whereas inflation = 1.2 will tend to result in very coarse grained clusterings. By default, inflation = 2.0. Default setting gives very good results for microarray data.
韧带主要控制。通货膨胀影响聚类的粒度。它通常在某处选择范围[1.2-5.0]。 inflation = 5.0往往会导致细粒度的聚类,而inflation = 1.2往往会导致非常粗粒聚类。默认情况下,inflation = 2.0。默认设置芯片的数据提供了很好的结果。
参数:median.center
if set to TRUE, median-centering is applied to the rows of the matrix.
如果设置为TRUE,中位数定心适用于矩阵的行。
参数:set.seed
specify seeds for random number generator.
指定随机数发生器的种子。
参数:returnRank
This argument modifies the output. Given a set of elements conserved after the filtering step of the DBFMCL algorithm, if returnRank = TRUE their expression values are replaced by their corresponding ranks in the input matrix.
这种说法修改输出。鉴于一套后的DBFMCL算法过滤步骤保守的元素,如果returnRank = TRUE的表达值及其相应职级所取代,在输入矩阵。
Details
详情----------Details----------
The Markov Cluster Algorithm was written by S. Van Dongen (see reference section). Cluster was originally written by Michael Eisen (http://rana.lbl.gov/EisenSoftware.htm). The command line version of Cluster version 3.0 was created by Michiel de Hoon, together with Seiya Imoto and Satoru Miyano.
马尔可夫聚类算法的书面由S.范栋勤(见参考文献部分)。最初是由迈克尔艾森(http://rana.lbl.gov/EisenSoftware.htm)的聚类。 Cluster版本3.0的命令行版本创建由米歇尔·胡恩,连同斗士井本和宫野悟。
警告----------Warnings----------
With the current implementation, this function works only on UNIX-like plateforms.
这个功能与目前的执引号况,工作类UNIX plateforms。
Cluster 3.0 should be installed in its command-line only version:
聚类应安装在它的命令行版本3.0:
Please see http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm for further informations.
请~mdehoon http://bonsai.ims.u-tokyo.ac.jp/ /软件/为进一步信息聚类/ software.htm的。
wget http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/cluster-1.36.tar.gz
wget http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/cluster-1.36.tar.gz
tar xvfz cluster-1.36.tar.gz
tar xvfz cluster-1.36.tar.gz
cd cluster-1.36/
cd cluster-1.36/
./configure --without-x
./configure --without-x
make
make
sudo make install
sudo make install
# You should get cluster in your path
# You should get cluster in your path
cluster -v
cluster -v
MCL should be installed:
MCL应安装:
# Download the latest version of mcl (the script has been tested successfully with the 06-058 version).
# Download the latest version of mcl (the script has been tested successfully with the 06-058 version).
wget http://micans.org/mcl/src/mcl-latest.tar.gz
wget http://micans.org/mcl/src/mcl-latest.tar.gz
# Uncompress and install mcl
# Uncompress and install mcl
tar xvfz mcl-latest.tar.gz
tar xvfz mcl-latest.tar.gz
cd mcl-xx-xxx
cd mcl-xx-xxx
./configure
./configure
make
make
sudo make install
sudo make install
# You should get mcl in your path
# You should get mcl in your path
mcl -h
mcl -h
作者(S)----------Author(s)----------
Bergon A., Lopez F., Textoris J., Granjeaud S. and Puthier D.
参考文献----------References----------
flexible toolbox to explore productively the transcriptional landscape of the Gene Expression Omnibus database. PLoSONE, 2008;3(12):e4001.
参见----------See Also----------
DBFMCL,heatmapFromCDT,plotGeneExpProfiles,getSignatures,getExpressionMatrix
DBFMCL,heatmapFromCDT,plotGeneExpProfiles,getSignatures,getExpressionMatrix
举例----------Examples----------
## Not run: [#无法运行:]
## with an artificial dataset[#与人工数据集]
m <- matrix(rnorm(80000), nc=20)
m[1:100,1:10] <- m[1:100,1:10] + 4
m[101:200,11:20] <- m[101:200,11:20] + 3
m[201:300,5:15] <- m[201:300,5:15] + -2
res <- createSignatures4TB(data = m, name="artificial", distance.method = "pearson", median.center=TRUE, k = 25)
plotGeneExpProfiles(res)
allsign <- heatmapFromCDT("artificial.dataMods.cdt")
plotGeneExpProfiles(res, signature=1)
heatmapFromCDT("artificial.dataMods.cdt", signature=1)
## with a real dataset[#一个真实的数据集]
library(ALL)
data(ALL)
exp <- createSignatures4TB(data = ALL , name="ALLdataset", distance.method = "pearson", median.center=TRUE, k = 100)
plotGeneExpProfiles(exp, signatures=1)
plotGeneExpProfiles(res)
allsign <- heatmapFromCDT("ALLdataset.dataMods.cdt")
si1 <- heatmapFromCDT("ALLdataset.dataMods.cdt", signature=1)
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|