找回密码
 注册
查看: 521|回复: 0

R语言 Rmagpie包 runOneLayerExtCV-methods()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 13:02:03 | 显示全部楼层 |阅读模式
runOneLayerExtCV-methods(Rmagpie)
runOneLayerExtCV-methods()所属R语言包:Rmagpie

                                        runOneLayerExtCV: Method to run an external one-layer cross-validation
                                         runOneLayerExtCV:运行一个外部层交叉验证的方法

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This method run an external one-layer cross-validation according to the options stored in an object of class assessment. The concept of external cross-validation has been introduced by G.J. McLachlan and C. Ambroise in 'Selection bias in gene extraction on the basis of microarray gene-expression data' (cf. section References). This technique of cross-validation is used to determine an unbiased estimate of the error rate when feature selection is involved.
这种方法运行一个外部层交叉验证,根据评估类的对象中存储的选项。外部交叉验证的概念已被引入吉焦克兰和C.安布鲁瓦兹中(见参考文献)在基因微阵列基因表达数据的基础上提取的选择偏倚。这种交叉验证技术被用来确定涉及特征选择时的错误率的无偏估计。


参数----------Arguments----------

参数:object
Object of class assessment. Object assessment of interest
Object of class assessment。感兴趣的对象评估


值----------Value----------

object of class assessment in which the one-layer external cross-validation has been computed, therfore, the slot resultRepeated1LayerCV is no more NULL. This methods print out the key results of the assessment, to access the full detail of the results, the user must call the method getResults.
object of class assessment在一个层外部交叉验证计算,故槽resultRepeated1LayerCV没有更多NULL。此方法打印出评估的主要成果,访问结果的全部细节,用户必须调用的方法getResults。


方法----------Methods----------




object = "assessment" This method is only applicable on objects of class
对象的“评估”这种方法只适用于类对象


参考文献----------References----------

extraction on the basis of microarray gene-expression data. PNAS,

参见----------See Also----------

assessment, getResults, runTwoLayerExtCV-methods
assessment,getResults,runTwoLayerExtCV-methods


举例----------Examples----------


data('vV70genesDataset')

# assessment with RFE and SVM[RFE和SVM与评估]
myExpe <- new("assessment", dataset=vV70genes,
                   noFolds1stLayer=9,
                   noFolds2ndLayer=10,
                   classifierName="svm",
                   typeFoldCreation="original",
                   svmKernel="linear",
                   noOfRepeat=2,
                   featureSelectionOptions=new("geneSubsets", optionValues=c(1,2,3,4,5,6)))

myExpe <- runOneLayerExtCV(myExpe)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-28 01:12 , Processed in 0.024265 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表