preprocess(Ringo)
preprocess()所属R语言包:Ringo
Preprocess Raw ChIP-chip Intensities
预处理原始芯片的芯片强度
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Calls one of various (limma) functions to transform raw probe intensities into (background-corrected) normalized log ratios (M-values).
调用一个不同(limma)函数来转换原始探针强度(背景校正)归log比(m值)。
用法----------Usage----------
preprocess(myRG, method="vsn", ChIPChannel="R", inputChannel="G",
returnMAList=FALSE, idColumn="PROBE_ID", verbose=TRUE, ...)
参数----------Arguments----------
参数:myRG
object of class RGList
对象类RGList
参数:method
string; denoting which normalization method to choose, see below for details
字符串;汉语表,其中规范化的方法来选择,请参阅以下详细
参数:ChIPChannel
string; which element of the RGList holds the ChIP result, see details
字符串;RGList持有芯片的结果,看到的元素的详细信息
参数:inputChannel
string; which element of the RGList holds the untreated input sample; see details
字符串;元素RGList持有未处理的输入样本;查看详细信息
参数:returnMAList
logical; should an MAList object be returned? Default is to return an ExpressionSet object.
逻辑;应MAList对象返回?默认返回ExpressionSet对象。
参数:idColumn
string; indicating which column of the genes data.frame of the RGList holds the identifier for reporters on the microarray. This column, after calling make.names on it, will make up the unique featureNames of the resulting ExpressionSet. If argument returnMAList is TRUE, this argument is ignored.
字符串;genesRGList的数据框列持有记者芯片的标识符。此列,后调用make.names就可以了,将弥补由此产生的featureNames独特ExpressionSet。如果参数returnMAList是TRUE,这种说法被忽略。
参数:verbose
logical; progress output to STDOUT?
逻辑;输出到STDOUT进展?
参数:...
further arguments to be passed on normalizeWithinArrays and normalizeBetweenArrays
normalizeWithinArrays和normalizeBetweenArrays通过进一步的参数
Details
详情----------Details----------
The procedure and called limma functions depend on the choice of method.
程序和一个名为limma功能取决于方法的选择。
loess Calls normalizeWithinArrays with
黄土呼唤normalizeWithinArrays
vsn Calls normalizeBetweenArrays with
VSN呼唤normalizeBetweenArrays
Gquantile Calls normalizeBetweenArrays with
normalizeBetweenArraysgquantile呼吁
Rquantile Calls normalizeBetweenArrays with
normalizeBetweenArraysrquantile呼吁
median Calls normalizeWithinArrays with
位数检测normalizeWithinArrays
nimblegen Scaling procedure used by Nimblegen. Yields scaled log-ratios by a two step procedure: srat = log2(R) - log2(G)
NimbleGen的缩放过程中使用的NimbleGen。产量缩减log比率由两个步骤:SRAT =为log2(R)的 - 为log2(Ğ)
Gvsn Learns vsn model on green channel intensities only and applies that transformation to both channels before
gvsn学习绿色通道强度vsn模型,并应用于两个通道前,改造
Rvsn Learns vsn model on red channel intensities only and applies that transformation to both channels before
RVSN学习强度只有红色通道vsn模型,并应用于两个通道前,改造
none No normalization of probe intensities, takes raw log2(R)-log2(G) as component M and (log2(R)+log2(G))/2 as component A;
无探针强度的标准化,需要原料log2(R)-log2(G)作为组件M和(log2(R)+log2(G))/2作为组件A;
Mostly with two-color ChIP-chip, the ChIP sample is marked with the red Cy5 dye and for the untreated input sample the green Cy3 dye is used. In that case the RGListmyRG's element R holds the ChIP data, and element G holds the input data. If this is not the case with your data, use the arguments ChIPChannel and inputChannel to specify the respective elements of myRG.
大多是两色芯片的芯片,该芯片的样品被标记为红色的Cy5染料和未处理的输入样本的绿色Cy3染料用于。在这种情况下,RGList myRG的元素R持有芯片的数据,元素G持有的输入数据。如果这是不是与您的数据的情况下,使用参数ChIPChannel和inputChannel指定myRG的相应元素。
值----------Value----------
Returns normalized, transformed values as an object of class ExpressionList or MAList.
返回规范化,转换后的值作为一个对象类ExpressionList或MAList。
注意----------Note----------
Since Ringo version 1.5.6, this function does not call limma's function backgroundCorrect directly any longer. If wanted by the user, background correction should be indicated as additional arguments passed on to normalizeWithinArrays or normalizeBetweenArrays, or alternatively call backgroundCorrect on the RGList before preprocessing.
由于林檎版本1.5.6,这个函数不调用limma的功能backgroundCorrect直接不再。如果用户想应该指出,背景校正为附加参数传递normalizeWithinArrays或normalizeBetweenArrays,或者叫backgroundCorrectRGList的前preprocess ING。
作者(S)----------Author(s)----------
Joern Toedling
参见----------See Also----------
normalizeWithinArrays, normalizeBetweenArrays, malist, ExpressionSet,
normalizeWithinArrays,normalizeBetweenArrays,malist,ExpressionSet
举例----------Examples----------
exDir <- system.file("exData",package="Ringo")
exRG <- readNimblegen("example_targets.txt","spottypes.txt",
path=exDir)
exampleX <- preprocess(exRG)
sampleNames(exampleX) <- make.names(paste(exRG$targets$Cy5,"vs",
exRG$targets$Cy3,sep="_"))
print(exampleX)
### compare VSN to NimbleGen's tukey-biweight scaling[#比较的VSN NimbleGen的杜克biweight缩放]
exampleX.NG <- preprocess(exRG, method="nimblegen")
sampleNames(exampleX.NG) <- sampleNames(exampleX)
if (interactive())
corPlot(cbind(exprs(exampleX),exprs(exampleX.NG)),
grouping=c("VSN normalized","Tukey-biweight scaled"))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|