找回密码
 注册
查看: 838|回复: 0

R语言 qpgraph包 qpgraph-package()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 11:39:48 | 显示全部楼层 |阅读模式
qpgraph-package(qpgraph)
qpgraph-package()所属R语言包:qpgraph

                                         The q-order partial correlation graph learning software, qpgraph.
                                         Q-阶偏相关图学习软件,qpgraph。

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

q-order partial correlation graphs, or qp-graphs for short, are undirected Gaussian graphical Markov models built from q-order partial correlations. They are useful for learning undirected graphical Gaussian Markov models from data sets where the number of random variables p exceeds the available sample size n as, for instance, in the case of microarray data where they can be employed to reverse engineer a molecular regulatory network.
Q-阶偏相关图,或简称为QP图,无向高斯图形马尔可夫模型建立Q-阶偏相关。他们是有用的学习资料无向图形高斯马尔可夫模型集随机变量数p超过可用的样本大小n的,例如,在那里他们可以扭转工程师的分子调控网络芯片数据的情况下。


Details

详情----------Details----------


功能----------Functions----------

qpNrr estimates non-rejection rates for every pair of variables.
qpNrr估计每对变量的非排斥反应发生率。

qpAvgNrr estimates average non-rejection rates for every pair of variables.
qpAvgNrr估计平均每对变量的非排斥反应发生率。

qpGenNrr estimates generalized average non-rejection rates for every pair of variables.
qpGenNrr估计广义平均每对变量的非排斥反应发生率。

qpEdgeNrr estimate the non-rejection rate of one pair of variables.
qpEdgeNrr估计一对变量的非废品率。

qpCItest performs a conditional independence test between two variables given a conditioning set.
qpCItest执行给予了空调集的两个变量之间的条件独立性测试。

qpHist plots the distribution of non-rejection rates.
qpHist图非排斥反应发生率的分布。

qpGraph obtains a qp-graph from a matrix of non-rejection rates.
qpGraph取得QP从非排斥反应发生率的矩阵图。

qpAnyGraph obtains an undirected graph from a matrix of pairwise measurements.
qpAnyGraph获得成对测量矩阵的无向图。

qpGraphDensity calculates and plots the graph density as function of the non-rejection rate.
qpGraphDensity功能的非废品率的计算和绘制图形密度。

qpCliqueNumber calculates the size of the largest maximal clique (the so-called clique number or maximum clique size) in a given undirected graph.
qpCliqueNumber计算最大的(所谓的集团数量或最大团的大小)在一个给定的无向图的最大团的大小。

qpClique calculates and plots the size of the largest maximal clique (the so-called clique number or maximum clique size) as function of the non-rejection rate.
qpClique计算和绘图的最大的最大集团作为非废品率的功能(所谓的集团数量或最大团的大小)的大小。

qpGetCliques finds the set of (maximal) cliques of a given undirected graph.
qpGetCliques发现一个给定的无向图(最大)拉帮结派。

qpRndWishart random generation for the Wishart distribution.
qpRndWishartWishart分布的随机生成。

qpCov calculates the sample covariance matrix, just as the function cov() but returning a dspMatrix-class object which efficiently stores such a dense symmetric matrix.
qpCov计算样本协方差矩阵,一样的功能cov()但返回一个dspMatrix-class对象,有效地保存如此密集的对称矩阵。

qpG2Sigma builds a random covariance matrix from an undrected graph. The inverse of the resulting matrix contains zeroes at the missing edges of the given undirected graph.
qpG2Sigma建立一个从undrected图的随机协方差矩阵。逆矩阵包含在给定的无向图的边失踪零。

qpUnifRndAssociation builds a matrix of uniformly random association values between -1 and +1 for all pairs of variables that follow from the number of variables given as input argument.
qpUnifRndAssociation建立一个均匀随机关联值介于-1和+1所有的变量,从给定的变量作为输入参数的数量按照对矩阵。

qpK2ParCor obtains the partial correlation coefficients from a given concentration matrix.
qpK2ParCor获得从一个给定的浓度矩阵的偏相关系数。

qpIPF performs maximum likelihood estimation of a sample covariance matrix given the independence constraints from an input list of (maximal) cliques.
qpIPF执行从输入列表(最大)拉帮结派约束的独立的样本协方差矩阵的最大似然估计。

qpPAC estimates partial correlation coefficients and corresponding P-values for each edge in a given undirected graph, from an input data set.
qpPAC估计偏相关系数为每一个给定的无向图的边缘,相应的P值,从输入数据集。

qpPCC estimates pairwise Pearson correlation coefficients and their corresponding P-values between all pairs of variables from an input data set.
qpPCC估计成对的Pearson相关系数和其相应的P值对所有变量之间的输入数据集。

qpRndGraph builds a random undirected graph with a bounded maximum connectivity degree on every vertex.
qpRndGraph建立一个有界的最高每一个顶点的连通度的随机无向图。

qpPrecisionRecall calculates the precision-recall curve for a given measure of association between all pairs of variables in a matrix.
qpPrecisionRecall计算精确的协会给所有对矩阵中的变量之间的措施召回曲线。

qpPRscoreThreshold calculates the score threshold at a given precision or recall level from a given precision-recall curve.
qpPRscoreThreshold计算从一个给定的精度,召回曲线在给定的精度或召回级别的得分阈值。

qpImportNrr imports non-rejection rates.
qpImportNrr进口非排斥反应发生率。

qpFunctionalCoherence estimates functional coherence of a given transcriptional regulatory network using Gene Ontology annotations.
qpFunctionalCoherence估计一个给定的使用基因本体论注释的转录调控网络的功能一致性。

qpTopPairs reports a top number of pairs of variables according to either an association measure and/or occurring in a given reference graph.
qpTopPairs报告对上面的数字变量,根据协会的措施和/或发生在一个给定的参考图。

qpPlotNetwork plots a network using the Rgraphviz library.
qpPlotNetwork图使用Rgraphviz图书馆网络。

This package provides an implementation of the procedures described in (Castelo and Roverato, 2006, 2009). An example of its use for reverse-engineering of transcriptional regulatory networks from microarray data is available in the vignette qpTxRegNet and, the same directory, contains a pre-print of a book chapter describing the basic functionality of the package which serves the purpose of a basic users's guide. This package is a contribution to the Bioconductor (Gentleman et al., 2004) and gR (Lauritzen, 2002) projects.
这个包提供了一个描述(卡斯特洛Roverato,2006年,2009年)的程序实施。其芯片数据的转录调控网络的反向工程使用的一个例子是在暗角qpTxRegNet,相同的目录中,包含了一本书描述本章的基本功能服务包预印本一个基本的用户指南的目的。这个包是Bioconductor(绅士等人,2004年)和GR(Lauritzen,2002年)项目的贡献。


作者(S)----------Author(s)----------




R. Castelo and A. Roverato





参考文献----------References----------

model search from microarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.
networks from microarray data with qp-graphs. J. Comput. Biol. 16(2):213-227, 2009.
Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K. Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M. Rosinni, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, T.Y.H. and Zhang, J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 5:R80, 2004.

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-1-31 23:42 , Processed in 0.027384 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表