qpEdgeNrr(qpgraph)
qpEdgeNrr()所属R语言包:qpgraph
Non-rejection rate estimation for a pair of variables
非排斥率估计为一对变量
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Estimates the non-rejection rate for one pair of variables.
非废品率估计为一对变量。
用法----------Usage----------
## S4 method for signature 'ExpressionSet'
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,
nTests=100, alpha=0.05, exact.test=TRUE,
R.code.only=FALSE)
## S4 method for signature 'data.frame'
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,
nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
exact.test=TRUE, R.code.only=FALSE)
## S4 method for signature 'matrix'
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,
n=NULL, nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
exact.test=TRUE, R.code.only=FALSE)
参数----------Arguments----------
参数:X
data set from where the non-rejection rate should be estimated. It can be either an ExpressionSet object, a data frame, or a matrix. If it is a matrix and the matrix is squared then this function assumes the matrix is the sample covariance matrix of the data and the sample size parameter n should be provided.
从非废品率应估计数据集。它可以是一个ExpressionSet对象,一个数据框,或一个矩阵。如果它是一个矩阵,矩阵的平方,那么这个函数假设矩阵数据的样本协方差矩阵和样本大小参数n应提供。
参数:i
index or name of one of the two variables in X to test.
指数X测试两个变量之一或名称。
参数:j
index or name of the other variable in X to test.
指数或其他在X测试的变量名称。
参数:q
order of the conditioning subsets employed in the calculation.
在计算中采用的空调子集的顺序。
参数:I
indexes or names of the variables in X that are discrete.
索引或X,变量的名称,是离散的。
参数:restrict.Q
indexes or names of the variables in X that restrict the sample space of conditioning subsets Q.
X限制空调子集问:样本空间的变量的索引或名称
参数:fix.Q
indexes or names of the variables in X that should be fixed within every conditioning conditioning subsets Q.
索引或变量的名称X应固定在每一个空调空调子集问:
参数:n
number of observations in the data set. Only necessary when the sample covariance matrix is provided through the X parameter.
在数据集的观测数。只有必要时通过X参数提供的样本协方差矩阵。
参数:nTests
number of tests to perform for each pair for variables.
测试,以执行对每个变量的数目。
参数:alpha
significance level of each test.
每个测试的显着水平。
参数:long.dim.are.variables
logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.
逻辑;如果为TRUE,则假定,在一个数据框或矩阵中的数据时,较长的尺寸是一个随机变量的定义(默认),如果为FALSE,则随机变量被假定为在数据列框或矩阵。
参数:exact.test
logical; if FALSE an asymptotic conditional independence test is employed with mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact conditional independence test with mixed data is employed.
逻辑;如果FALSE一个渐进的条件独立性测试采用混合(即连续和离散)数据;如果TRUE(默认),然后一个确切的数据好坏参半,有条件的独立测试采用。
参数:R.code.only
logical; if FALSE then the faster C implementation is used (default); if TRUE then only R code is executed.
逻辑;如果为FALSE则更快的C实现使用(默认);如果TRUE,那么只有R代码被执行。
Details
详情----------Details----------
The estimation of the non-rejection rate for a pair of variables is calculated as the fraction of tests that accept the null hypothesis of independence given a set of randomly sampled q-order conditionals.
一对变量的非废品率估计计算的分数测试,接受独立的零假设给定一组Q-顺序随机抽样的条件。
Note that the possible values of q should be in the range 1 to min(p,n-3), where p is the number of variables and n the number of observations. The computational cost increases linearly with q.
注意q可能的值应该在1min(p,n-3),p是变量的数目和n若干意见的范围。计算成本的增加而线性与q。
值----------Value----------
An estimate of the non-rejection rate for the particular given pair of variables.
特别是对变量的非排斥率的估计。
作者(S)----------Author(s)----------
R. Castelo and A. Roverato
参考文献----------References----------
Gaussian graphical model search from microarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.
参见----------See Also----------
qpNrr qpAvgNrr qpHist qpGraphDensity qpClique
qpNrrqpAvgNrrqpHistqpGraphDensityqpClique
举例----------Examples----------
require(mvtnorm)
nObs <- 100 ## number of observations to simulate[#号观测到模拟]
## the following adjacency matrix describes an undirected graph[#以下的邻接矩阵描述一个无向图]
## where vertex 3 is conditionally independent of 4 given 1 AND 2[顶点3#,其中是有条件的4个独立的1和2]
A <- matrix(c(FALSE, TRUE, TRUE, TRUE,
TRUE, FALSE, TRUE, TRUE,
TRUE, TRUE, FALSE, FALSE,
TRUE, TRUE, FALSE, FALSE), nrow=4, ncol=4, byrow=TRUE)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
qpEdgeNrr(X, i=3, j=4, q=1, long.dim.are.variables=FALSE)
qpEdgeNrr(X, i=3, j=4, q=2, long.dim.are.variables=FALSE)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|