rcModelPLMr(preprocessCore)
rcModelPLMr()所属R语言包:preprocessCore
Fit robust row-column models to a matrix
强大的行列模型,以适应矩阵
译者:生物统计家园网 机器人LoveR
描述----------Description----------
These functions fit row-column effect models to matrices using PLM-r and variants
这些功能配合使用PLM-R和变种的矩阵的行列效应模型
用法----------Usage----------
rcModelPLMr(y)
rcModelPLMrr(y)
rcModelPLMrc(y)
rcModelWPLMr(y, w)
rcModelWPLMrr(y, w)
rcModelWPLMrc(y, w)
参数----------Arguments----------
参数:y
A numeric matrix
一个数字矩阵
参数:w
A matrix or vector of weights. These should be non-negative.
权重矩阵或向量。这些应该非负。
Details
详情----------Details----------
These functions fit row-column models to the specified input
这些功能适合指定的输入行列模型
with r_i and c_j as row and column effects respectively. Note that these functions treat the row effect as the parameter to be constrained using sum to zero.
用r_i和c_j分别为行和列的效果。请注意,这些功能被限制使用的总和为零的参数当作行的效果。
The rcModelPLMr and rcModelWPLMr functions use the PLM-r fitting procedure. This adds column and row robustness to single element robustness.
rcModelPLMr和rcModelWPLMr功能使用的PLM-R管件的过程。这列和行添加单个元素的鲁棒性鲁棒性。
The rcModelPLMrc and rcModelWPLMrc functions use the PLM-rc fitting procedure. This adds column robustness to single element robustness.
rcModelPLMrc和rcModelWPLMrc功能使用PLM-RC的拟合程序。这增加了列单个元素的鲁棒性鲁棒性。
The rcModelPLMrr and rcModelWPLMrr functions use the PLM-rr fitting procedure. This adds row robustness to single element robustness.
rcModelPLMrr和rcModelWPLMrr功能使用的PLM-RR的装修过程。这增加了行单一元素的鲁棒性鲁棒性。
值----------Value----------
A list with following items:
下列项目列表:
参数:Estimates
The parameter estimates. Stored in column effect then row effect order
参数估计。存储在列效果,然后排效果秩序
参数:Weights
The final weights used
所使用的决赛权
参数:Residuals
The residuals
残差
参数:StdErrors
Standard error estimates. Stored in column effect then row effect order
标准误差估计。存储在列效果,然后排效果秩序
作者(S)----------Author(s)----------
B. M. Bolstad <a href="mailto:bmb@bmbolstad.com">bmb@bmbolstad.com</a>
举例----------Examples----------
col.effects <- c(10,11,10.5,12,9.5)
row.effects <- c(seq(-0.5,-0.1,by=0.1),seq(0.1,0.5,by=0.1))
y <- outer(row.effects, col.effects,"+")
w <- runif(50)
rcModelPLMr(y)
rcModelWPLMr(y, w)
### An example where there no or only occasional outliers[#一个例子,那里没有或只是偶尔离群]
y <- y + rnorm(50,sd=0.1)
par(mfrow=c(2,2))
image(1:10,1:5,rcModelPLMr(y)$Weights,xlab="row",ylab="col",main="PLM-r",zlim=c(0,1))
image(1:10,1:5,rcModelPLMrc(y)$Weights,xlab="row",ylab="col",main="PLM-rc",zlim=c(0,1))
image(1:10,1:5,rcModelPLMrr(y)$Weights,xlab="row",ylab="col",main="PLM-rr",zlim=c(0,1))
matplot(y,type="l")
### An example where there is a row outlier[那里是一个离群行的一个例子##]
y <- outer(row.effects, col.effects,"+")
y[1,] <- 11+ rnorm(5)
y <- y + rnorm(50,sd=0.1)
par(mfrow=c(2,2))
image(1:10,1:5,rcModelPLMr(y)$Weights,xlab="row",ylab="col",main="PLM-r",zlim=c(0,1))
image(1:10,1:5,rcModelPLMrc(y)$Weights,xlab="row",ylab="col",main="PLM-rc",zlim=c(0,1))
image(1:10,1:5,rcModelPLMrr(y)$Weights,xlab="row",ylab="col",main="PLM-rr",zlim=c(0,1))
matplot(y,type="l")
### An example where there is a column outlier[#一个例子,其中有一列离群]
y <- outer(row.effects, col.effects,"+")
w <- rep(1,50)
y[,4] <- 12 + rnorm(10)
y <- y + rnorm(50,sd=0.1)
par(mfrow=c(2,2))
image(1:10,1:5,rcModelWPLMr(y,w)$Weights,xlab="row",ylab="col",main="PLM-r",zlim=c(0,1))
image(1:10,1:5,rcModelWPLMrc(y,w)$Weights,xlab="row",ylab="col",main="PLM-rc",zlim=c(0,1))
image(1:10,1:5,rcModelWPLMrr(y,w)$Weights,xlab="row",ylab="col",main="PLM-rr",zlim=c(0,1))
matplot(y,type="l")
### An example where there is both column and row outliers[#一个例子,其中有两列和行离群]
y <- outer(row.effects, col.effects,"+")
w <- rep(1,50)
y[,4] <- 12 + rnorm(10)
y[1,] <- 11+ rnorm(5)
y <- y + rnorm(50,sd=0.1)
par(mfrow=c(2,2))
image(1:10,1:5,rcModelWPLMr(y,w)$Weights,xlab="row",ylab="col",main="PLM-r",zlim=c(0,1))
image(1:10,1:5,rcModelWPLMrc(y,w)$Weights,xlab="row",ylab="col",main="PLM-rc",zlim=c(0,1))
image(1:10,1:5,rcModelWPLMrr(y,w)$Weights,xlab="row",ylab="col",main="PLM-rr",zlim=c(0,1))
matplot(y,type="l")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|