plgem.deg(plgem)
plgem.deg()所属R语言包:plgem
Selection of Differentially Expressed Genes/Proteins With PLGEM
差异表达基因/蛋白随着PLGEM的选择
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function selects differentially expressed genes/proteins (DEG) at a given significance level, based on observed PLGEM signal-to-noise ratio (STN) values (typically obtained via a call to plgem.obsStn) and pre-computed p-values (typically obtained via a call to plgem.pValue).
此功能选择在一个给定的显着水平差异表达的基因/蛋白质(二甘醇),观察PLGEM信号噪声比(STN)的值(通常是调用plgem.obsStn通过获得)和预先计算的基础上P-值(通常调用plgem.pValue通过获得)。
用法----------Usage----------
plgem.deg(observedStn, plgemPval, delta=0.001, verbose=FALSE)
参数----------Arguments----------
参数:observedStn
list containing a matrix of observed PLGEM-STN values; output of function plgem.obsStn.
list含有观测PLGEM-STN值matrix的;输出功能plgem.obsStn。
参数:plgemPval
matrix of p-values; output of function plgem.pValue.
matrixp值;输出功能plgem.pValue。
参数:delta
numeric vector; the significance level(s) to be used for the selection of DEG; value(s) must be between 0 and 1 (excluded).
数字向量;显着水平(S)使用二甘醇的选择;值(S)必须是0和1之间(不含)。
参数:verbose
logical; if TRUE, comments are printed out while running.
logical;如果TRUE评论打印出来,而运行。
Details
详情----------Details----------
This function allows for the selection of DEG by setting a significance cut-off on pre-calculated p-values. The significance level delta roughly represents the false positive rate of the DEG selection, e.g. if a delta of 0.001 is chosen in a microarray dataset with 10,000 genes (none of which is truly differentially expressed), on average 10 genes/proteins are expected to be selected by chance alone.
此功能允许通过设置在预先计算的P-值显着性切断为二甘醇的选择。显着性水平delta大致代表的二甘醇选择的假阳性率,如delta的0.001如果选择10000(这是没有真正的差异表达基因),平均10个基因/蛋白质,在一个芯片集预计将选择机会单独。
值----------Value----------
A list of four elements:
一个list四个要素:
参数:fit
the input plgemFit.
输入plgemFit。
参数:PLGEM.STN
the input matrix of observed PLGEM-STN values (see plgem.obsStn for details).
输入matrix的观察PLGEM-STN值(见plgem.obsStn细节)。
参数:p-value
the input matrix of p-values (see plgem.pValue for details).
输入matrixp-值(见plgem.pValue详情)。
参数:significant
a list with a number of elements equal to the number of different significance levels (delta) used as input. Each element of this list is again a list, whose number of elements correspond to the number of performed comparisons (i.e. the number of conditions in the starting ExpressionSet minus the baseline). Each of these second level elements is a character vector of significant gene/protein names that passed the statistical test at the corresponding significance level.
list不同的显着水平(delta)作为输入的数量相等的元素的数量。这个名单中的每个元素又是一个列表的元素对应的数量进行比较(即条件出发ExpressionSet减去基准)。这些第二级元素,每一个character重要的基因/蛋白名字,通过相应的显着性水平的统计检验的矢量。
作者(S)----------Author(s)----------
Mattia Pelizzola <a href="mailto:mattia.pelizzola@gmail.com">mattia.pelizzola@gmail.com</a>
Norman Pavelka <a href="mailto:normanpavelka@gmail.com">normanpavelka@gmail.com</a>
参考文献----------References----------
Ricciardi-Castagnoli P. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics. 2004 Dec 17; 5:203; http://www.biomedcentral.com/1471-2105/5/203.
Florens L, Washburn MP. Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol Cell Proteomics. 2008 Apr; 7(4):631-44; http://www.mcponline.org/cgi/content/abstract/7/4/631.
参见----------See Also----------
plgem.fit, plgem.obsStn, plgem.resampledStn, plgem.pValue, run.plgem
plgem.fit,plgem.obsStn,plgem.resampledStn,plgem.pValue,run.plgem
举例----------Examples----------
data(LPSeset)
LPSfit <- plgem.fit(data=LPSeset, fittingEval=FALSE)
LPSobsStn <- plgem.obsStn(data=LPSeset, plgemFit=LPSfit)
set.seed(123)
LPSresampledStn <- plgem.resampledStn(data=LPSeset, plgemFit=LPSfit)
LPSpValues <- plgem.pValue(LPSobsStn, LPSresampledStn)
LPSdegList <- plgem.deg(observedStn=LPSobsStn, plgemPval=LPSpValues,
delta=0.001)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|