pdmClass(pdmclass)
pdmClass()所属R语言包:pdmclass
Function to Classify Microarray Data using Penalized
功能分类芯片数据使用判罚
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function is used to classify microarray data. Since the underlying model fit is based on penalized discriminant methods, there is no need for a pre-filtering step to reduce the number of genes.
此功能用于微阵列数据分类。由于底层模型的拟合处罚的判别方法的基础上,有没有必要为预过滤步骤,以减少基因数目。
用法----------Usage----------
pdmClass(formula , method = c("pls", "pcr", "ridge"), keep.fitted =
TRUE, ...)
参数----------Arguments----------
参数:formula
A symbolic description of the model to be fit. Details given below.
一个象征性的描述模型是合适的。细节如下。
参数:method
One of "pls", "pcr", "ridge", corresponding to partial least squares, principal components regression and ridge regression.
一个“请”,“PCR”,“脊”,相应的偏最小二乘,主成分回归和岭回归。
参数:keep.fitted
Boolean. Should the fitted values be kept? Default is TRUE, as this is necessary for the plotting and predict functions.
布尔值。应保持拟合值吗?默认是真实的,因为这是必要的策划和预测功能。
参数:...
Additional parameters to pass to method or fda. See fda for more information.
额外的参数传递给method或fda。看到fda更多信息。
Details
详情----------Details----------
The formula interface is identical to all other formula calls in R, namely Y ~ X, where Y is a numeric vector of class assignments and X is a matrix or data.frame containing the gene expression values. Note that unlike most microarray analyses, in this instance the columns of X are genes and rows are samples, so most calls will require something similar to Y ~ t(X).
公式的接口是相同的所有其他配方研发,即Y~X,其中Y是一个课堂作业的数字向量,含有该基因的表达值,X是一个矩阵或数据框。请注意,不像大多数的微阵列分析,在此实例中的X列是基因和行是样品,所以大多数检测会要求到Y~T(X)类似。
值----------Value----------
an object of class "fda". Use predict to extract discriminant variables, posterior probabilities or predicted class memberships. Other extractor functions are coef, and plot.
对象类"fda"。使用predict提取判别变量,后验概率或预测的类成员。其他提取功能是coef,plot。
The object has the following components:
对象有下列组件:
参数:percent.explained
the percent between-group variance explained by each dimension (relative to the total explained.)
%,组间方差解释每个维度(相对总解释。)
参数:values
optimal scaling regresssion sum-of-squares for each dimension (see reference). The usual discriminant analysis eigenvalues are given by values / (1-values), which are used to define percent.explained.
最优尺度回归与总和的平方为每个维度(见参考文献)。通常的判别分析特征值values / (1-values),这是用来定义percent.explained。
参数:means
class means in the discriminant space. These are also scaled versions of the final theta's or class scores, and can be used in a subsequent call to fda (this only makes sense if some columns of theta are omitted—see the references).
类是指在判别空间。这也是最后THETA或类分数的缩放版本,可用于后续调用fda(这有道理,如果THETA一些列略见参考文献)。
参数:theta.mod
(internal) a class scoring matrix which allows predict to work properly.
(内部)一类的得分矩阵允许predict正常工作。
参数:dimension
dimension of discriminant space.
维空间的判别。
参数:prior
class proportions for the training data.
训练数据的类比例。
参数:fit
fit object returned by method.
适合method返回的对象。
参数:call
the call that created this object (allowing it to be update-able)
创建这个对象的调用(允许它是update能)
参数:confusion
A 'confusion' matrix that shows how well the classifier works using the training data.
一个“混乱”的矩阵,显示如何使用的训练数据分类工作。
作者(S)----------Author(s)----------
James W. MacDonald and Debashis Ghosh, based on <code>fda</code> in
the <code>mda</code> package of Trevor Hastie and Robert Tibshirani, which
was ported to R by Kurt Hornik, Brian D. Ripley, and Friedrich Leisch.
参考文献----------References----------
Tibshirani and Buja, 1994, JASA, 1255-1270.
Annals of Statistics, 1995 (in press).
举例----------Examples----------
library(fibroEset)
data(fibroEset)
y <- as.factor(pData(fibroEset)[,2])
x <- t(exprs(fibroEset))
pdmClass(y ~ x)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|