pdmClass.cv(pdmclass)
pdmClass.cv()所属R语言包:pdmclass
Leave One Out Crossvalidation
留下一出交叉验证
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function performs a leave one out crossvalidation to estimate the accuracy of a classifier built using pdmClass.
此功能进行了交叉验证休假估计一个分类的准确性建成使用pdmClass。
用法----------Usage----------
pdmClass.cv(Y, X, method = c("pls", "pcr", "ridge"))
参数----------Arguments----------
参数:Y
A vector of factors giving the class assignments for the samples to be used in the crossvalidation.
一个因素,在交叉验证中使用的样品,给类分配的向量。
参数:X
A matrix with samples in rows and observations in columns. Note that this is different than the usual paradigm for microarray data.
一个矩阵中的行和列的意见样本。请注意,这比通常芯片数据范式是不同的。
参数:method
One of "pls", "pcr", "ridge", corresponding to partial least squares, principal components regression and ridge regression.
一个“请”,“PCR”,“脊”,相应的偏最小二乘,主成分回归和岭回归。
Details
详情----------Details----------
This function performs a leave one out crossvalidation, which can be used to estimate the accuracy of a classifier. Each sample is removed in turn and a classifier is built using the remaining samples. The class of the removed sample is then predicted using the classifier. This is repeated for each sample, resulting in a vector of predicted class assignments for each sample in the original training set.
这个函数执行了交叉验证的假期之一,可以用来估计一个分类的准确性。每个样品又被删除,并利用其余的样本建立一个分类。然后采用分级预测的类取出样品。这是每个样品重复,导致在原训练集的向量,在每个样品预测的课堂作业。
Although far from perfect, this method can be used to estimate the accuracy of a given classifier without splitting data into a training and testing set.
虽然远非完美,这种方法可以用来估计某一分类的准确性没有分裂成一个培训和测试集数据。
值----------Value----------
A vector of factors giving the predicted class assignments for each of the samples in the training set. A confusion matrix can be constructed using confusion.
一个因素,给每个训练集样本预测的课堂作业的向量。一个混淆矩阵可以构造使用confusion。
作者(S)----------Author(s)----------
James W. MacDonald
参考文献----------References----------
Tibshirani and Buja, 1994, JASA, 1255-1270.
举例----------Examples----------
library(fibroEset)
data(fibroEset)
y <- as.factor(pData(fibroEset)[,2])
x <- t(exprs(fibroEset))
tmp <- pdmClass.cv(y, x)
confusion(tmp, y)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|