sigxy.plot(OLIN)
sigxy.plot()所属R语言包:OLIN
Visualisation of significance tests for spatial bias
可视化的空间偏见显着性检验
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function produces a 2D-plot visualizing the significance
这个函数生成一个二维图可视化的意义
用法----------Usage----------
sigxy.plot(Sp,Sn,color.lim=c(-3,3),...)
参数----------Arguments----------
参数:Sp
matrix of false discovery rates or p-values for positive deviation of median/mean of \code{M} as produced by fdrspatial or p.spatial
虚假的发现率或p值正偏差矩阵median/mean of \code{M}fdrspatial或p.spatial生产的
参数:Sn
matrix of false discovery rate or p-values for negative deviation of median/mean of \code{M} as produced by fdrspatial or p.spatial
虚假的发现率或p值负偏差矩阵median/mean of \code{M}fdrspatial或p.spatial生产的
参数:color.lim
limits of color range for plotting vector corresponding to log10(pS) and log10(nS)
色彩范围的限制绘制矢量LOG10(pS)和log10(nS)
参数:...
Further optional graphical parameter for the image function generating the MXY plot
进一步可选参数image函数的图形生成MXY图
Details
详情----------Details----------
The function sigxy.plot produces a 2d-plot presenting the significance (pS,nS) generated by fdrint or p.spatial. The significance Sp for positive median/mean of \code{M} of spatial spot neighbourhoods are presented by red colour; the significance(Sn) for negative median/mean of \code{M} of
功能sigxy.plot产生2D图呈现的意义(pS,nS)生成fdrint或p.spatial。意义Sp积极median/mean of \code{M}的空间点社区是由红色;负Sn意义(median/mean of \code{M})
作者(S)----------Author(s)----------
Matthias E. Futschik (<a href="http://itb.biologie.hu-berlin.de/~futschik">http://itb.biologie.hu-berlin.de/~futschik</a>)
参见----------See Also----------
colorbar.sig, fdr.spatial, p.spatial, image,
colorbar.sig,fdr.spatial,p.spatial,image
举例----------Examples----------
# To run these examples, "un-comment" them![要运行这些例子,“联合国发表评论”他们!]
#[]
# LOADING DATA[加载数据]
# data(sw)[数据(SW)]
#[]
# M <- v2m(maM(sw)[,1],Ngc=maNgc(sw),Ngr=maNgr(sw),[v2m M“ - (MAM(SW)[1],NGC = maNgc(SW),NGR = maNgr(SW),]
# Nsc=maNsc(sw),Nsr=maNsr(sw),main="MXY plot of SW-array 1")[NSC = maNsc(SW),NSR = maNsr(SW),主要=“SW阵列1 MXY图”)]
#[]
# CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS[作者:现货,邻里意义的计算]
# This can take a while! For testing, you may choose a smaller N.[这可能需要一段时间!进行测试,您可以选择一个较小的北]
# FDR <- fdr.spatial(M,delta=2,N=100,av="median",edgeNA=TRUE)[< - fdr.spatialFDR(男,δ= 2,n = 100,AV =“中位数”,edgeNA = TRUE时)]
# sigxy.plot(FDR$FDRp,FDR$FDRn,color.lim=c(-5,5),main="FDR")[sigxy.plot(FDR$ FDRp,FDR$ FDRn,color.lim = C(-5,5),主要=“FDR”)]
# []
# LOADING NORMALISED DATA[装载正规化的资料]
# data(sw.olin)[数据(sw.olin)]
# M <- v2m(maM(sw.olin)[,1],Ngc=maNgc(sw.olin),Ngr=maNgr(sw.olin),[M“ - v2m(MAM(sw.olin)的[1],NGC = maNgc(sw.olin),NGR = maNgr(sw.olin),]
# Nsc=maNsc(sw.olin),Nsr=maNsr(sw.olin),main="MXY plot of SW-array 1")[的NSC = maNsc(sw.olin)(NSR = maNsr sw.olin),主要=“SW阵列1 MXY图”)]
#[]
# CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS[作者:现货,邻里意义的计算]
# FDR <- fdr.spatial(M,delta=2,N=100,av="median",edgeNA=TRUE)[< - fdr.spatialFDR(男,δ= 2,n = 100,AV =“中位数”,edgeNA = TRUE时)]
# VISUALISATION OF RESULTS[结果的可视化]
# sigxy.plot(FDR$FDRp,FDR$FDRn,color.lim=c(-5,5),main="FDR")[sigxy.plot(FDR$ FDRp,FDR$ FDRn,color.lim = C(-5,5),主要=“FDR”)]
#[]
#[]
# CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS [作者:现货,邻里意义的计算]
# P <- p.spatial(M,delta=2,N=-1,av="median",p.adjust.method="holm")[p.spatial,P < - (男,Delta= 2,n = -1,AV =“中间”,p.adjust.method =“冬青”)]
# VISUALISATION OF RESULTS[结果的可视化]
# sigxy.plot(P$Pp,P$Pn,color.lim=c(-5,5),main="FDR")[sigxy.plot($ PP,P $ PN color.lim = C(-5,5),主要=“FDR”)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|