p.int(OLIN)
p.int()所属R语言包:OLIN
Calculates significance of intensity-dependent bias
计算强度依赖偏见的意义
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function assesses the significance of intensity-dependent bias. This is achieved by comparing the observed average values of logged fold-changes within an intensity neighbourhood with an empirical distribution generated by permutation tests. The significance is given
此功能评估依赖强度偏见的意义。这是通过比较记录fold change的观测平均值排列测试所产生的经验分布与强度邻里内。意义
用法----------Usage----------
p.int(A,M,delta=50,N=-1,av="median",p.adjust.method="none")
参数----------Arguments----------
参数:A
vector of average logged spot intensity
平均记录现场强度矢量
参数:M
vector of logged fold changes
向量记录的fold change
参数:delta
integer determining the size of the neighbourhood (2 * delta+1).
附近的大小确定的整数(2 * delta+1)。
参数:N
number of random samples (of size 2 * delta+1) used for the generation of empirical distribution. If N is negative, the number of samples 100 times the length of A.
随机抽样(大小2 * delta+1)用于发电的经验分布。如果n是负数,样本数A长度的100倍。
参数:av
averaging of M within neighbourhood by mean or median (default)
平均M内邻里均值或中位数(默认)
参数:p.adjust.method
method for adjusting p-values due to multiple testing regime. The available methods are “none”, “bonferroni”, “holm”, “hochberg”, “hommel” and “fdr”. See also p.adjust </table>
由于多次的测试制度,调整p值的方法。可用的方法是“无”,“邦弗朗尼”,“冬青”,“hochberg”,“HOMMEL”和“FDR”。还可以看p.adjust</ TABLE>
Details
详情----------Details----------
The function p.int assesses the significance of intensity-dependent bias using a permutation test. The null hypothesis states the independence of A and M. To test if M depends on A, spots are ordered with respect to A. This defines a neighbourhood of spots with similar A for each spot. Next, the test statistic is the median or mean of M within a spot's intensity neighbourhood of chosen size (2 *delta+1). The empirical distribution of the this statistic is then generated based on N random samples (with replacement). (Note that sampling without replacement is used for fdr.int. Also note, that different meaning of argument N in p.int and fdr.int. The argument N in p.int is the number fo independent samples (of size 2 *delta+1) derived from the original distribution. The argument N in fdr.int states how many times the original distribution is randomised and the permutated distribution is used for generating the empirical distribution.) Comparing this empirical distribution of median/mean of \code{M} with the observed distribution of median/mean of \code{M}, the independence of M and A is assessed. If M is independent of A, the empirical distribution of median/mean of \code{M} can be expected to be symmetrically distributed around its mean value. To assess the significance of observing positive deviations of the p-values are used. It indicates the expected proportion of neighbourhoods with larger median/mean of \code{M} than the actual one based on the empirical distribution of median/mean of \code{M}. The minimal p-value is set to 1/N. Correspondingly, the significance of observing negative deviations of median/mean of \code{M} can be determined.
功能p.int评估依赖强度偏置使用置换测试的意义。空假说和研究要测试的独立性,如果M取决于A,点到A排列,这定义了一个类似的每一个点附近的斑点。下一步,检验统计量是中位数或平均M在一个点的大小选择强度邻里(2 *delta+1)。在此统计数据的实证分配,然后产生基于N(更换)随机抽样。 (请注意,无需更换采样。还要注意,不同的含义,论证fdr.intN和p.int。参数fdr.intN p.int数量FO独立样本(大小2 *delta+1)从原来的分配所得。参数Nfdr.int多少次,原来的分布是随机的和permutated分配用于发电的经验分布。)比较这median/mean of \code{M}median/mean of \code{M}观测分布,独立性M和A评估的经验分布。如果M的A是独立的,经验分布median/mean of \code{M}可以预计将周围对称分布及其均值。为了评估用于观察p值的正偏差的意义。它表明预期的比例较大median/mean of \code{M}比实际的基础上,经验分布median/mean of \code{M}街区。最小的p值设置为1/N。相应的,意义观察负偏差median/mean of \code{M}的,可确定。
值----------Value----------
A list of vector containing the p-values for positive (Pp) and negative (Pn) deviations of median/mean of \code{M} of the spot's neighbourhood is produced. Values corresponding to spots
含P-值(Pp)为积极和消极的(Pn)median/mean of \code{M}点的附近产生偏差向量列表。值对应斑点
注意----------Note----------
The same functionality but with our input and output formats is offered by p.int2
提供相同的功能,但我们的输入和输出格式p.int2
作者(S)----------Author(s)----------
Matthias E. Futschik (<a href="http://itb.biologie.hu-berlin.de/~futschik">http://itb.biologie.hu-berlin.de/~futschik</a>)
参见----------See Also----------
p.int2,fdr.int, sigint.plot, p.adjust
p.int2,fdr.int,sigint.plot,p.adjust
举例----------Examples----------
# To run these examples, "un-comment" them![要运行这些例子,“联合国发表评论”他们!]
#[]
# LOADING DATA NOT-NORMALISED[加载数据没有,正规化]
# data(sw)[数据(SW)]
# CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS[作者:现货,邻里意义的计算]
# For this illustration, N was chosen rather small. For "real" analysis, it should be larger.[对于这个例子,N的选择相当小。 “真实”的分析,它应该更大。]
# P <- p.int(maA(sw)[,1],maM(sw)[,1],delta=50,N=10000,av="median",p.adjust.method="none")[,P < - p.int(MAA(SW)[1],MAM(SW)[1],δ= 50,n = 10000,AV =“中位数”,p.adjust.method =“无”)]
# VISUALISATION OF RESULTS[结果的可视化]
# sigint.plot(maA(sw)[,1],maM(sw)[,1],Sp=P$Pp,Sn=P$Pn,c(-5,-5))[sigint.plot(MAA(SW)[1],MAM(SW)[1],SP = $ PN,C(-5,-5)= $ PP,锡)]
# LOADING NORMALISED DATA[装载正规化的资料]
# data(sw.olin)[数据(sw.olin)]
# CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS [作者:现货,邻里意义的计算]
# P <- p.int(maA(sw.olin)[,1],maM(sw.olin)[,1],delta=50,N=10000,av="median",p.adjust.method="none")[P均< - p.int(MAA(sw.olin)[1] MAM(sw.olin)的[1],δ= 50,n = 10000,AV =“中位数”,p.adjust.method = “无”)]
# VISUALISATION OF RESULTS[结果的可视化]
# sigint.plot(maA(sw.olin)[,1],maM(sw.olin)[,1],Sp=P$Pp,Sn=P$Pn,c(-5,-5))[sigint.plot(MAA(sw.olin)[1] MAM(sw.olin)的[1],SP = $ PN,C(-5,-5)= $ PP,锡)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|