找回密码
 注册
查看: 609|回复: 0

R语言 OLIN包 fdr.int()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 08:19:36 | 显示全部楼层 |阅读模式
fdr.int(OLIN)
fdr.int()所属R语言包:OLIN

                                        Assessment of the significance of  intensity-dependent bias
                                         评估依赖强度偏见的意义

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

This function assesses the significance of intensity-dependent bias by an one-sided random permutation test.  The observed average values of logged fold-changes within an intensity neighbourhood are compared to an empirical distribution generated by random  permutation. The significance  is given by the false discovery rate.
此功能评估依赖强度偏见,片面的随机排列试验的意义。记录内强度邻里倍变化的观测平均值相比,经验分布产生随机置换。的意义是虚假的发现率。


用法----------Usage----------


fdr.int(A,M,delta=50,N=100,av="median")



参数----------Arguments----------

参数:A
vector of average logged spot intensity
平均记录现场强度矢量


参数:M
vector of logged fold changes
向量记录的fold change


参数:delta
integer determining the size of the neighbourhood. The actual window size is  (2 * delta+1).
整数确定附近的大小。实际的窗口大小是(2 * delta+1)。“


参数:N
number of random permutations performed for generation of empirical distribution
一代的经验分布进行随机排列的号码


参数:av
averaging of M within neighbourhood by mean or median (default)
平均M内邻里均值或中位数(默认)


Details

详情----------Details----------

The function fdr.int assesses significance of  intensity-dependent bias using a one-sided random permutation test. The null hypothesis states the independence of A and M. To test if M depends on A,  spots are ordered with respect to A. This defines a neighbourhood of spots with similar A for each spot.  Next, a test statistic is defined by calculating the median or mean of M within a symmetrical spot's intensity neighbourhood of chosen size (2 *delta+1). An empirical distribution of the  test statistic is produced by calculating  for N random  intensity orders of spots.  Comparing this empirical distribution of median/mean of \code{M} with the observed distribution of median/mean of \code{M}, the independence of M and A is assessed. If M is independent of A, the empirical distribution  of median/mean of \code{M} can be  expected to be   distributed around its mean value.  The false discovery rate (FDR) is used to   assess the significance of observing positive deviations of  median/mean of \code{M}.  It  indicates the expected proportion of false positives  among  rejected null hypotheses. It is defined as FDR=q*T/s,  where q is the fraction of median/mean of \code{M} larger than  chosen threshold  c for the empirical distribution, s is the number of neighbourhoods with   (median/mean of \code{M})> c  for the distribution derived from the original data and T  is the total number of neighbourhoods in the original data.  Varying threshold c determines the FDR for each spot neighbourhood. FDRs equal zero are set to FDR=1/T*N for computational reasons, as log10(FDR) is plotted by sigint.plot. Correspondingly, the significance of observing negative deviations of median/mean of \code{M} can be determined. If the neighbourhood
功能fdr.int评估依赖强度偏置使用一种片面的随机排列试验的意义。空假说和研究要测试的独立性,如果M取决于A,点到A排列,这定义了一个类似的每一个点附近的斑点。接下来,定义一个测试统计计算中位数或平均M在一个对称的点的大小选择强度居委会(2 *delta+1)。一个检验统计量的经验分布计算N点随机强度订单生产。这median/mean of \code{M}与median/mean of \code{M}的观测分布,独立性M和A评估的经验分布的比较。如果M的A是独立的,经验分布median/mean of \code{M}可以预计将围绕其平均值的分布。虚假的发现率(FDR)是用来评估观察median/mean of \code{M}的正偏差的意义。它表示拒绝虚无假设之间的误报预期的比例。它被定义为FDR=q*T/s,其中q是的median/mean of \code{M}比选择的经验分布阈值C,大的一小部分s是(median/mean of \code{M})> c分布的居民区来自原始数据和T街区是在原始数据的总数。不同的阈值Ç决定为每个点附近的FDR。 FDRs等于零计算的原因,FDR=1/T*N为log10(FDR)sigint.plot绘制。相应的,意义观察负偏差median/mean of \code{M}的,可确定。如果邻里


值----------Value----------

A list of vector containing the false discovery rates for positive  (FDRp) and negative (FDRn)  deviations of
为假阳性发现率(FDRp)和阴性(FDRn)偏差的向量列表,其中包含


注意----------Note----------

The same functionality but with our input and output formats is offered by fdr.int
提供相同的功能,但我们的输入和输出格式fdr.int


作者(S)----------Author(s)----------


Matthias E. Futschik (<a href="http://itb.biologie.hu-berlin.de/~futschik">http://itb.biologie.hu-berlin.de/~futschik</a>)



参见----------See Also----------

fdr.int2,p.int, fdr.spatial, sigint.plot
fdr.int2,p.int,fdr.spatial,sigint.plot


举例----------Examples----------



# To run these examples, delete the comment signs (#) in front of the commands.[要运行这些例子,在前面的命令中删除注释符号(#)。]
#[]
# LOADING DATA NOT-NORMALISED[加载数据没有,正规化]
# data(sw)[数据(SW)]
# CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS[作者:现货,邻里意义的计算]
# For this example, N was chosen rather small. For "real" analysis, it should be larger.[对于这个例子,N的选择相当小。 “真实”的分析,它应该更大。]
# FDR &lt;- fdr.int(maA(sw)[,1],maM(sw)[,1],delta=50,N=10,av="median")[FDR(MAA(SW)[1],MAM(SW)[1],δ= 50,N = 10,AV =“中位数”)< -  fdr.int]
# VISUALISATION OF RESULTS[结果的可视化]
# sigint.plot(maA(sw)[,1],maM(sw)[,1],FDR$FDRp,FDR$FDRn,c(-5,-5))[(SW)sigint.plot(MAA [1],MAM(SW)[1],FDR$ FDRp,“FDR$ FDRn,C(-5,-5))]

# LOADING NORMALISED DATA[装载正规化的资料]
# data(sw.olin)[数据(sw.olin)]
# CALCULATION OF SIGNIFICANCE OF SPOT NEIGHBOURHOODS [作者:现货,邻里意义的计算]
# FDR &lt;- fdr.int(maA(sw.olin)[,1],maM(sw.olin)[,1],delta=50,N=10,av="median")[FDR(MAA(sw.olin)[1] MAM(sw.olin)的[1],δ= 50,N = 10,AV =“中位数”)< -  fdr.int]
# VISUALISATION OF RESULTS[结果的可视化]
# sigint.plot(maA(sw.olin)[,1],maM(sw.olin)[,1],FDR$FDRp,FDR$FDRn,c(-5,-5))[(sw.olin)sigint.plot(MAA [1] MAM(sw.olin)的[1],FDR$ FDRp,“FDR$ FDRn,C(-5,-5))]


转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-2 15:04 , Processed in 0.029748 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表