set.default.parameters(nem)
set.default.parameters()所属R语言包:nem
Get/set hyperparameters
获取/设置hyperparameters“
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Allows to set and retrieve various hyperparameters for different inference methods.
允许设置和检索各种hyperparameters不同的推理方法。
用法----------Usage----------
set.default.parameters(Sgenes, ...)
参数----------Arguments----------
参数:Sgenes
character vector of S-gene identifiers
S基因标识的特征向量
参数:...
parameters to set (see details)
参数设置(见详情)
Details
详情----------Details----------
Since version 2.5.4 functions in the nem package do not have any more a large amount of individual parameters. Instead there is just one hyperparameter, which is passed to all functions. Parameter values with the hyperparameter can be set with this function.
从版本2.5.4在NEM包功能没有任何更多的大量的个人参数。相反,仅仅是一个的hyperparameter,这是传递给所有的功能。具有这种功能,可以设置参数值与hyperparameter。
type mLL or FULLmLL or CONTmLL or CONTmLLBayes or CONTmLLMAP or gnem. CONTmLLDens and CONTmLLRatio are identical to CONTmLLBayes and CONTmLLMAP and are still supported for compatibility reasons. mLL and FULLmLL are used for binary data (see BoutrosRNAiDiscrete) and CONTmLL for a matrix of effect probabilities. CONTmLLBayes and CONTmLLMAP are used, if log-odds ratios, p-value densities or any other model specifies effect likelihoods. CONTmLLBayes refers to an inference scheme, were the linking positions of effect reporters to network nodes are integrated out, and CONTmLLMAP to an inference scheme, were a MAP estimate for the linking positions is calculated. depn indicates Deterministic Effects Propagation Networks (DEPNs).
类型mLL或FULLmLL或CONTmLL或CONTmLLBayes或CONTmLLMAP或gnem。 CONTmLLDens和CONTmLLRatio是相同的CONTmLLBayes和CONTmLLMAP“仍然支持兼容性的原因。 mLL和FULLmLL使用二进制数据(见BoutrosRNAiDiscrete)CONTmLL影响概率矩阵。 CONTmLLBayes和CONTmLLMAP使用,如果数的比值比,p值密度或任何其他模型指定效果似然性。 CONTmLLBayes是指一个推论计划,影响记者的联系网络节点的位置都集成了,CONTmLLMAP推理计划,是一个连接位置的图估计的计算方法。 depn表示确定性效应的传播网络(DEPNs)。
para vector of length two: false positive rate and false negative rate for binary data. Used by mLL
第向量长度为二:假阳性率和假阴性率二进制数据。使用mLL
hyperpara vector of length four: used by FULLmLL() for binary data
hyperpara向量的长度为4:用于二进制数据FULLmLL()
Pe prior of effect reporter positions in the phenotypic hierarchy (same dimension as D). Not used type gnem. Default: NULL
PE之前,在表型层次的效果(同一维度为D)记者职位。不使用类型gnem。默认值:NULL
Pm prior over models (n x n matrix). Default: NULL
下午在模型前(N×N的矩阵)。默认值:NULL
Pmlocal local model prior for pairwise and triple learning. For pairwise learning generated by local.model.prior according to arguments local.prior.size and local.prior.bias
pmlocal局部模型前,成对和三重学习。为成对的学习产生local.model.prior根据论点local.prior.size和local.prior.bias
local.prior.size prior expected number of edges in the graph (for pairwise learning). Default: no. nodes
local.prior.size事先预计在图边数(成对学习)。默认:没有。节点
local.prior.bias bias towards double-headed edges. Default: 1 (no bias; for pairwise learning)
local.prior.bias对双头边缘的偏见。默认:1(没有偏见;成对学习)
triples.thrsh threshold for model averaging to combine triple models for each edge. Default: 0.5
平均每边的三重模型结合triples.thrsh阈值模型。默认值:0.5
lambda regularization parameter to incorporate prior assumptions. May also be a vector of possible values, if nemModelSelection is used, Default: 0 (no regularization)
拉姆达正规化参数纳入之前的假设。也可能是一个可能值的向量,如果nemModelSelection使用,默认:0(没有正规化)
delta regularization parameter for automated subset selection of effect reporters (CONTmLLMAP only). Default: 1/no. nodes
Delta的影响记者的自动化子集选择正规化参数(CONTmLLMAP)的。默认:1/no。节点
selEGenes automated E-gene subset selection (includes tuning of delta for CONTmLLMAP). Default: FALSE
selEGenes自动化电子基因子集选择(包括增量调整CONTmLLMAP)。默认值:FALSE
trans.close Should always transitive closed graphs be computed? Default: TRUE. NOTE: This has only an impact for type nem.greedyMAP and gnem. Default: TRUE
trans.close应始终传递的封闭图形进行计算?默认:true。注:这只是一个类型nem.greedyMAP和gnem的影响。默认:true
backward.elimination For module networks and greedy hillclimbing inference: Try to eliminate edges increasing the likelihood. Works only, if trans.close=FALSE. Default: FALSE
对于模块网络和贪婪hillclimbing推理backward.elimination:尝试增加的可能性,以消除边缘。只有工作,如果trans.close = FALSE。默认值:FALSE
mode For Bayesian network inference and GNEMs: binary_ML: effects come from a binomial distribution - ML learning of parameters (Bayesian networks only); binary_Bayesian: effects come from a binomial distribution - Bayesian learning of parameters (Bayesian networks only); continous_ML: effects come from a normal distribution - ML learning of parameters; continous_Bayesian: effects come from a normal distribution - Bayesian learning of parameters.
对于贝叶斯网络推理和GNEMs的模式:binary_ML:从二项分布的影响 - 参数的ML学习(只贝叶斯网络);binary_Bayesian:从二项分布的影响 - 参数的贝叶斯学习(贝叶斯来自正态分布 - 参数的ML学习;continous_ML:影响正态分布参数 - 贝叶斯学习网络);continous_Bayesian:影响。
nu.intervention, lambda.intervention For gnem: For any perturbed node we suppose the unknown mean mu given its unknown variance sigma2 to be drawn from N(nu.intervention, sigma2/lambda.intervention). Default: nu.intervention=0.6, lambda.intervention=4
nu.intervention,lambda.interventiongnem:对于任何扰动的节点,我们假设未知平均亩从氮(nu.intervention,sigma2/lambda.intervention)绘制其未知方差sigma2的到。默认:nu.intervention = 0.6,lambda.intervention = 4
nu.no\_intervention, lambda.no\_intervention The same parameters for unperturbed nodes. Default: nu.no\_intervention=0.95, lambda.no\_intervention=4
nu.no \ _intervention,lambda.no \ _intervention相同的参数泰然自若节点。默认:nu.no \ _intervention = 0.95,lambda.no \ _intervention = 4
df.intervention, scale.intervention For gnem: The unknown variance sigma2 for perturbed nodes is supposed to be drawn from Inv-χ^2(df.intervention, scale.intervention). Default: df.intervention=4.4, scale.intervention=4.4
df.intervention,scale.interventiongnem:扰动的节点应该未知方差sigma2的INV-χ^2(df.intervention,scale.intervention)绘制。默认:df.intervention = 4.4,scale.intervention = 4.4
df.no\_intervention, scale.no\_intervention The same parameters for unperturbed nodes. Default: df.no\_intervention=4.4, scale.no\_intervention=0.023
df.no \ _intervention,scale.no \ _intervention相同的参数泰然自若节点。默认:df.no \ _intervention = 4.4,scale.no \ _intervention = 0.023
map For gnem: Mapping of interventions to network nodes. The format is a named list of strings with names being the interventions and entries being the network nodes. Default: Entries and names are the network nodes.
图gnem:映射到网络节点的干预。格式是一个字符串名为名称的干预和作为网络节点的条目列表。默认:条目和名称的网络节点。
outputdir Directory where to put diagnostic plots. Default: folder "QualityControl" in current working directory
outputdir指南把诊断图的位置。默认:“在当前工作目录的文件夹”QualityControl
debug Print out or plot diagnostic information. Default: FALSE
调试打印或绘制的诊断信息。默认值:FALSE
mc.cores number of cores to be used on a multicore processor. Default: 8
mc.cores多核处理器上使用的核心数量。默认值:8
值----------Value----------
A list containing all parameters described above.
一个包含所有参数的列表,上面描述。
作者(S)----------Author(s)----------
Holger Froehlich <a href="http:/www.dkfz.de/mga2/people/froehlich">http:/www.dkfz.de/mga2/people/froehlich</a>
举例----------Examples----------
control = set.default.parameters(LETTERS[1:5], type="CONTmLLBayes", selEGenes=TRUE) # set inference type and whether to use automatic E-gene selection for a network with nodes "A"-"E".[推理类型设置是否使用网络节点的“A”自动e-基因选择 - “E”的。]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|