nem(nem)
nem()所属R语言包:nem
Nested Effects Models - main function
嵌套效应模型 - 主要功能
译者:生物统计家园网 机器人LoveR
描述----------Description----------
The main function to perform model learning from data
执行从数据模型学习的主要功能
用法----------Usage----------
nem(D,inference="nem.greedy",models=NULL,control=set.default.parameters(setdiff(unique(colnames(D)),"time")), verbose=TRUE)
## S3 method for class 'nem'
print(x, ...)
参数----------Arguments----------
参数:D
data matrix with experiments in the columns (binary or continious)
矩阵中列的实验数据(二进制或305.11)
参数:inference
search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alternating MAP optimization using log odds or log p-value densities
search使用详尽列举,triples三重基于推理,pairwise为成对启发式,ModuleNetwork的模块为基础的推理,nem.greedy贪婪hillclimbing ,nem.greedyMAPp值交替图优化log赔率或log密度
参数:models
a list of adjacency matrices for model search. If NULL, an exhaustive enumeration of all possible models is performed.
邻接矩阵模型搜索列表。如果为NULL,详尽列举所有可能的模式进行。
参数:control
list of parameters: see set.default.parameters
参数列表:看到set.default.parameters
参数:verbose
do you want to see progression statements? Default: TRUE
你想看到进展的报表?默认:true
参数:x
nem object
NEM对象
参数:...
other arguments to pass
其他参数传递
Details
详情----------Details----------
If parameter Pm != NULL and parameter lambda == 0, a Bayesian approach to include prior knowledge is used. Alternatively, the regularization parameter lambda can be tuned in a model selection step via the function nemModelSelection using the BIC criterion. If automated subset selection of effect reporters is used and parameter type == CONTmLLMAP, the regularization parameter delta is tuned via the AIC model selection criterion. Otherwise, an iterative algorithm is executed, which in an alternating optimization scheme reconstructs a network given the current set of effect reporters and then selects the effect reporters having the highest likelihood under the given network. The procedure is run until convergence.
如果参数时!= NULL和参数的lambda == 0,贝叶斯方法,包括事先了解使用。另外,正规化参数的lambda可以通过模式选择功能nemModelSelection使用的BIC准则一步调整。如果效果记者自动化子集选择和参数类型== CONTmLLMAP,正规化参数Delta的调谐通过AIC模型选择标准。否则,一个迭代算法执行时,在交替的优化方案,重建当前影响记者网络,然后选择效果记者,根据给定的网络中有最高的可能性。正在运行的程序,直到收敛。
The function plot.nem plots the inferred phenotypic hierarchy as a directed graph, the likelihood distribution of the models (only for exhaustive search) or the posterior position of the effected genes.
函数plot.nem图推断为一个有向图,该车型的可能性分布(只适用于穷举搜索)或受影响的基因后位置的表型层次。
值----------Value----------
参数:graph
the inferred directed graph (graphNEL object)
推断的指示图(graphNEL对象)
参数:mLL
log posterior marginal likelihood of final model
登录后最终模型的边际可能性
参数:pos
posterior over effect positions
后路以上效果的位置
参数:mappos
MAP estimate of effect positions
MAP估计效果立场
参数:selected
selected E-gene subset
选择电子基因子集
参数:LLperGene
likelihood per selected E-gene
然每选定电子基因
参数:control
hyperparameter as in function call
hyperparameter作为在函数调用
作者(S)----------Author(s)----------
Holger Froehlich <URL: http:/www.dkfz.de/mga2/people/froehlich>, Florian Markowetz <URL: http://genomics.princeton.edu/~florian>
参见----------See Also----------
set.default.parameters, nemModelSelection, nem.jackknife, nem.bootstrap, nem.consensus, local.model.prior, plot.nem
set.default.parameters,nemModelSelection,nem.jackknife,nem.bootstrap,nem.consensus,local.model.prior,plot.nem
举例----------Examples----------
data("BoutrosRNAi2002")
D <- BoutrosRNAiDiscrete[,9:16]
control = set.default.parameters(unique(colnames(D)), para=c(0.13, 0.05))
res1 <- nem(D,inference="search", control=control)
res2 <- nem(D,inference="pairwise", control=control)
res3 <- nem(D,inference="triples", control=control)
res4 <- nem(D,inference="ModuleNetwork", control=control)
res5 <- nem(D,inference="nem.greedy", control=control)
res6 = nem(BoutrosRNAiLods, inference="nem.greedyMAP", control=control)
par(mfrow=c(2,3))
plot.nem(res1,main="exhaustive search")
plot.nem(res2,main="pairs")
plot.nem(res3,main="triples")
plot.nem(res4,main="module network")
plot.nem(res5,main="greedy hillclimber")
plot.nem(res6,main="alternating MAP optimization")
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|