找回密码
 注册
查看: 1413|回复: 0

R语言 nem包 nem.discretize()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 07:46:57 | 显示全部楼层 |阅读模式
nem.discretize(nem)
nem.discretize()所属R语言包:nem

                                        Discretize perturbation data according to control experiments
                                         离散扰动数据,根据对照实验

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

discretizes raw data to define effects of interventions with respect to wildtype/control measurements
离散原始数据定义与野生型/控制测量方面的干预效果


用法----------Usage----------


nem.discretize(D,neg.control=NULL,pos.control=NULL,nfold=2,cutoff=0:10/10, pCounts=20, empPval=.05, verbose=TRUE)



参数----------Arguments----------

参数:D
matrix with experiments as columns and effect reporters as rows
矩阵与列和行的效果记者实验


参数:neg.control
either indices of columns in D or a matrix with the same number of rows as D
D或与相同数量的行D的矩阵列任指数


参数:pos.control
either indices of columns in D or a matrix with the same number of rows as D
D或与相同数量的行D的矩阵列任指数


参数:nfold
fold-change between neg. and pos. controls for selecting effect reporters. Default: 2
倍之间的负变化。和POS。选择的影响记者的控制。默认是:2


参数:cutoff
a (vector of) cutoff value(s) weighting the pos. controls versus the neg. controls. Default: 0:10/10  
(矢量)的临界值(S)的比重在POS。与NEG的控制。控制。默认:0:10 / 10


参数:pCounts
pseudo-counts to guard against unreasonable low error estimates
伪计数,以防止不合理的低错误估计


参数:empPval
empirical p-value cutoff for effects if only one control is available
经验p值截止的影响,如果只有一个控制


参数:verbose
Default: TRUE
默认:true


Details

详情----------Details----------

Chooses cutoff such that separation between negative and positive controls becomes optimal.
阴性和阳性对照组之间的分离成为最佳选择截止。


值----------Value----------


参数:dat
discretized data matrix
离散数据矩阵


参数:pos
discretized positive controls [in the two-controls setting]
离散阳性对照[在两个控件设置]


参数:neg
discretized negative controls [in the two-controls setting]
离散阴性对照[在两个控件设置]


参数:sel
effect reporters selected [in the two-controls setting]
选择效果记者在两个控件设置]


参数:cutoff
error rates for different cutoff values [in the two-controls setting]
在两个控件设置不同的临界值的误差率[]


参数:para
estimated error rates [in the two-controls setting]
估计错误率[在两个控件设置]


注意----------Note----------

preliminary! will be developed to be more generally applicable
初步的!将发展成为更普遍适用


作者(S)----------Author(s)----------


Florian Markowetz <URL: http://genomics.princeton.edu/~florian>



参考文献----------References----------

<h3>See Also</h3>

举例----------Examples----------


   # discretize Boutros data as in[在离散布特罗斯数据]
   # Markowetz et al, 2005[markowetz等,2005]
   data("BoutrosRNAi2002")
   disc <- nem.discretize(BoutrosRNAiExpression,neg.control=1:4,pos.control=5:8,cutoff=.7)
   stopifnot(disc$dat==BoutrosRNAiDiscrete[,9:16])   

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-3 01:00 , Processed in 0.038195 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表