找回密码
 注册
查看: 663|回复: 0

R语言 nem包 infer.edge.type()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-26 07:45:40 | 显示全部楼层 |阅读模式
infer.edge.type(nem)
infer.edge.type()所属R语言包:nem

                                        Infer regulation direction for each edge
                                         每边的推断调控方向

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

The method infers edge types (up-regulation, down-regulation) for a given nem model. For an edge a->b the method looks at the fraction of E-genes attached to b (including b itself), which are up- or down-regulated in a knock-down of a. If significantly more genes are down-regulated than up-regulated, the edge a->b is assumed to be an activation. Likewise, if significantly more genes are up-regulated than down-regulated, a->b is assumed to be an inhibition. If there is no significant difference in up- and down-regulated edges, a->b does not have a specified type.
该方法推断为一个给定的NEM模型的边缘类型(上调,下调)。一个边缘> B的方法,在连接到B(包括B本身)电子基因,其中的一小部分查找,或在一个击倒下调。如果显着更多的基因下调比上调,边缘A-> B被认为是一个激活。同样,如果显着更多的基因上调比下调,A-> B是假设,是一种抑制。如果没有显着性差异和下调的边缘,A-> B没有指定类型。


用法----------Usage----------


infer.edge.type(x, logFC, alpha=0.05, adj.method="BY")



参数----------Arguments----------

参数:x
nem object     
NEM对象


参数:logFC
matrix with fold changes. The rownames of this matrix should correspond to the rownames of the data matrix, which was used to infer the nem model.
矩阵倍的变化。应该对应的数据矩阵,这是用来推断NEM模型rownames矩阵rownames的。


参数:alpha
p-value cutoff
P-值截止


参数:adj.method
multiple testing correction method. Default: Benjamini-Yekutieli   
多次测试修正方法。默认:Benjamini-Yekutieli


Details

详情----------Details----------

Significance is calculated using a two-tailed binomial test with null hypothesis p=0.5.
计算的意义在于用零假设P = 0.5二项式测试双尾。


值----------Value----------

Modified nem object. Each edge in the nem graph now has a "weight" and a "label" attribute. The label attribute corresponds to the original value in the adjacency matrix. The weight attribute encodes up- and down-regulation in the following way: value 2 means up-regulation, value -1 down-regulation and value 1 corresponds to an unknown regulation type.
改性NEM对象。每个NEM图的边缘,现在有一个“重”和“标签”属性。标签的属性对应的邻接矩阵的原始值。重属性编码以下列方式下调:值2意味着上调,值-1下调和值1对应于一个未知的调节类型。


作者(S)----------Author(s)----------


Holger Froehlich



参见----------See Also----------

binom.test
binom.test


举例----------Examples----------


           data("BoutrosRNAi2002")
        D <- BoutrosRNAiDiscrete[,9:16]          
        result = nem(D, control=set.default.parameters(unique(colnames(D)), para=c(0.13,0.05)))
           resEdgeInf = infer.edge.type(result, BoutrosRNAiLogFC)
           plot.nem(resEdgeInf)

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-3 01:12 , Processed in 0.020847 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表