mt.rawp2adjp(multtest)
mt.rawp2adjp()所属R语言包:multtest
Adjusted p-values for simple multiple testing procedures
调整后的P-值简单的多个测试程序
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This function computes adjusted p-values for simple multiple testing procedures from a vector of raw (unadjusted) p-values. The procedures include the Bonferroni, Holm (1979), Hochberg (1988), and Sidak procedures for strong control of the family-wise Type I error rate (FWER), and the Benjamini & Hochberg (1995) and Benjamini & Yekutieli (2001) procedures for (strong) control of the false discovery rate (FDR). The less conservative adaptive Benjamini & Hochberg (2000) and two-stage Benjamini & Hochberg (2006) FDR-controlling procedures are also included.
此函数计算调整p多个测试程序简单,从原料(未经调整)p的值的向量值。该程序包括的邦弗朗尼,霍尔姆(1979),Hochberg(1988),和控制能力强的家庭明智的类型错误率(FWER),Benjamini的Hochberg(1995年)和Benjamini及Yekutieli(Sidak程序2001年)的程序(强)的错误发现率(FDR)的控制权。不太保守的自适应Benjamini&Hochberg(2000)和两阶段Benjamini&Hochberg(2006)FDR的控制程序也包括在内。
用法----------Usage----------
mt.rawp2adjp(rawp, proc=c("Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD",
"BH", "BY","ABH","TSBH"), alpha = 0.05, na.rm = FALSE)
参数----------Arguments----------
参数:rawp
A vector of raw (unadjusted) p-values for each hypothesis under consideration. These could be nominal p-values, for example, from t-tables, or permutation p-values as given in mt.maxT and mt.minP. If the mt.maxT or mt.minP functions are used, raw p-values should be given in the original data order, rawp[order(index)].
原料(未经调整)p假设所考虑的每个值向量。这可能是名义p值,例如从t表,或置换p值mt.maxT和mt.minP的。如果mt.maxT或mt.minP使用功能,原料p值应在原始数据的顺序,rawp[order(index)]。
参数:proc
A vector of character strings containing the names of the multiple testing procedures for which adjusted p-values are to be computed. This vector should include any of the following: "Bonferroni", "Holm", "Hochberg", "SidakSS", "SidakSD", "BH", "BY", "ABH", "TSBH".<br> Adjusted p-values are computed for simple FWER- and FDR- controlling procedures based on a vector of raw (unadjusted) p-values by one or more of the following methods:
一个矢量字符的字符串包含多个测试程序调整p值计算的名称。这个向量应包括以下任何:"Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY" "ABH","TSBH"调整参考p值计算简单FWER的和FDR的控制程序的基础上的矢量原料(未经调整)p - 值由一个或多个下列方法:
BonferroniBonferroni single-step adjusted p-values for strong control of the FWER.
BonferroniBonferroni单步调整p的FWER强大的控制值。
HolmHolm (1979) step-down adjusted p-values for strong control of the FWER.
HolmHolm(1979)降压调整p的FWER强大的控制值。
Hochberg Hochberg (1988) step-up adjusted p-values for strong control of the FWER (for raw (unadjusted) p-values satisfying the Simes inequality).
Hochberg hochberg(1988)步的调整p的FWER的控制能力强值(原始(未经调整)p值满足的Simes不平等)。
SidakSSSidak single-step adjusted p-values for strong control of the FWER (for positive orthant dependent test statistics).
SidakSSSidak单步调整p的FWER的控制能力强值(积极orthant依赖测试统计)。
SidakSDSidak step-down adjusted p-values for strong control of the FWER (for positive orthant dependent test statistics).
SidakSDSidak降压调整p的FWER强大的控制值(积极orthant依赖测试统计)。
BHAdjusted p-values for the Benjamini & Hochberg (1995) step-up FDR-controlling procedure (independent and positive regression dependent test statistics).
BHAdjustedp值的Benjamini Hochberg(1995)升压FDR控制程序(独立和积极的回归依赖测试统计)。
BYAdjusted p-values for the Benjamini & Yekutieli (2001) step-up FDR-controlling procedure (general dependency structures).
BYAdjustedp值的Benjamini Yekutieli升压FDR控制程序(一般依赖结构)(2001)。
ABHAdjusted p-values for the adaptive Benjamini & Hochberg (2000) step-up FDR-controlling procedure. This method ammends the original step-up procedure using an estimate of the number of true null hypotheses obtained from p-values.
ABHAdjustedp值的自适应Benjamini Hochberg(2000)升压FDR控制程序。这种方法ammends原来的升压过程,使用的从p值获得真正的零假设的估计数。
TSBHAdjusted p-values for the two-stage Benjamini & Hochberg (2006) step-up FDR-controlling procedure. This method ammends the original step-up procedure using an estimate of the number of true null hypotheses obtained from a first-pass application of "BH". The adjusted p-values are a-dependent, therefore alpha must be set in the function arguments when using this procedure.
TSBHAdjustedp值的两阶段Benjamini Hochberg(2006)升压FDR控制程序。这种方法ammends原始步骤程序使用从"BH"第一遍应用获得真正的零假设的估计数。调整后的p值a依赖,因此alpha必须在函数的参数设置时,使用此程序。
参数:alpha
A nominal type I error rate, or a vector of error rates, used for estimating the number of true null hypotheses in the two-stage Benjamini & Hochberg procedure ("TSBH"). Default is 0.05.
名义I型错误率,或错误率的向量,真正的零假设的数量估计在两个阶段Benjamini Hochberg程序("TSBH")。默认值是0.05。
参数:na.rm
An option for handling NA values in a list of raw p-values. If FALSE, the number of hypotheses considered is the length of the vector of raw p-values. Otherwise, if TRUE, the number of hypotheses is the number of raw p-values which were not NAs.
处理NA值在原料p值的列表选项。如果FALSE,认为假说是原料p值向量的长度。否则,如果TRUE,假说是原材料p值NA的数量。
值----------Value----------
A list with components:
与组件列表:
参数:adjp
A matrix of adjusted p-values, with rows corresponding to hypotheses and columns to multiple testing procedures. Hypotheses are sorted in increasing order of their raw (unadjusted) p-values.
一个调整p值的矩阵,行相应的假设和列多个测试程序。假设是在越来越多的原料(未经调整)p值的顺序排序。
参数:index
A vector of row indices, between 1 and length(rawp), where rows are sorted according to their raw (unadjusted) p-values. To obtain the adjusted p-values in the original data order, use adjp[order(index),].
一个行指数的向量,介于1和length(rawp),根据它们的原始(未经调整)p的值的行进行排序。要获得原始数据的顺序调整p值,使用adjp[order(index),]。
参数:h0.ABH
The estimate of the number of true null hypotheses as proposed by Benjamini & Hochberg (2000) used when computing adjusted p-values for the "ABH" procedure (see Dudoit et al., 2007).
真正的零假设的数量估计,由Benjamini Hochberg(2000)提出的用于计算时调整p"ABH"程序值(见Dudoit等,2007)。
参数:h0.TSBH
The estimate (or vector of estimates) of the number of true null hypotheses as proposed by Benjamini et al. (2006) when computing adjusted p-values for the "TSBH" procedure. (see Dudoit et al., 2007).
估计数量由Benjamini等提出了真正的零假设(或估计向量)。 (2006年)时,计算调整p"TSBH"程序值。 (见Dudoit等。,2007)。
作者(S)----------Author(s)----------
Sandrine Dudoit, <a href="http://www.stat.berkeley.edu/~sandrine">http://www.stat.berkeley.edu/~sandrine</a>,<br>
Yongchao Ge, <a href="mailto:yongchao.ge@mssm.edu">yongchao.ge@mssm.edu</a>,<br>
Houston Gilbert, <a href="http://www.stat.berkeley.edu/~houston">http://www.stat.berkeley.edu/~houston</a>.
参考文献----------References----------
rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.<br>
hypothesis testing in microarray experiments. Statistical Science. Vol. 18: 71-103. <br>
Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: Focus on the false discovery rate and simulation study. Biometrical Journal, 50(5):716-44. http://www.stat.berkeley.edu/~houston/BJMCPSupp/BJMCPSupp.html. <br>
procedure. Scand. J. Statist.. Vol. 6: 65-70.
参见----------See Also----------
mt.maxT, mt.minP,
mt.maxT,mt.minP
举例----------Examples----------
# Gene expression data from Golub et al. (1999)[Golub等基因表达数据。 (1999)]
# To reduce computation time and for illustrative purposes, we condider only[为了减少计算时间,并说明目的,我们只condider]
# the first 100 genes and use the default of B=10,000 permutations.[第100个基因,并使用默认的B =万排列。]
# In general, one would need a much larger number of permutations[在一般情况下,将需要一个更大的数目排列]
# for microarray data.[微阵列数据。]
data(golub)
smallgd<-golub[1:100,]
classlabel<-golub.cl
# Permutation unadjusted p-values and adjusted p-values for maxT procedure[未经调整的置换P-值和p值调整maxT过程]
res1<-mt.maxT(smallgd,classlabel)
rawp<-res1$rawp[order(res1$index)]
# Permutation adjusted p-values for simple multiple testing procedures[置换调整p值简单的多个测试程序]
procs<-c("Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY","ABH","TSBH")
res2<-mt.rawp2adjp(rawp,procs)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|