clr(minet)
clr()所属R语言包:minet
Context Likelihood or Relatedness Network
语境的可能性或相关度网络
译者:生物统计家园网 机器人LoveR
描述----------Description----------
clr takes the mutual information matrix as input in order to return the infered network - see details.
clr互信息矩阵作为输入,以返回推导网络 - 查看详细信息。
用法----------Usage----------
clr( mim )
参数----------Arguments----------
参数:mim
A square matrix whose i,j th element is the mutual information between variables X_i and X_j - see build.mim.
一个方阵的我,第j个元素是变量之间的相互信息X_i和X_j - 看到build.mim。
Details
详情----------Details----------
The CLR algorithm is an extension of relevance network. Instead of considering the mutual information I(Xi;Xj) between features Xi and Xj, it takes into account the score sqrt(zi^2+zj^2), where <br>
CLR的算法是一个有关网络的扩展。而不考虑互信息I(Xi;Xj)特征之间的Xi和Xj,它考虑到比分sqrt(zi^2+zj^2),其中参考
and mean(Xi) and sd(Xi) are, respectively, the mean and the standard deviation of the empirical distribution of the mutual information values I(Xi,Xk), k=1,...,n.
mean(Xi)和sd(Xi)分别是I(Xi,Xk),K = 1,...,N的互信息值的经验分布的均值和标准偏差。
值----------Value----------
clr returns a matrix which is the weighted adjacency matrix of the network. In order to display the network, load the package Rgraphviz and use the following comand plot( as( returned.matrix ,"graphNEL") )
clr返回一个矩阵,这是网络的加权邻接矩阵。为了显示网络,加载的包Rgraphviz和使用下面的COMAND图((returned.matrix,“graphNEL”))
参考文献----------References----------
Wierzbowski, Guillaume Cottarel, Simon Kasif, James J. Collins, and Timothy S. Gardner. Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 2007.
参见----------See Also----------
build.mim, aracne, mrnet, mrnetb
build.mim,aracne,mrnet,mrnetb
举例----------Examples----------
data(syn.data)
mim <- build.mim(syn.data,estimator="spearman")
net <- clr(mim)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|