metahdep.REMA(metahdep)
metahdep.REMA()所属R语言包:metahdep
metahdep.REMA
metahdep.REMA
译者:生物统计家园网 机器人LoveR
描述----------Description----------
Performs a random effects linear model meta-analysis, allowing for hierarchical dependence. It returns a list containing the results.
执行线性模型随机效应荟萃分析,让层次的依赖。它返回一个列表,其中包含的结果。
用法----------Usage----------
metahdep.REMA(theta, V, X, M = NULL, dep.groups = NULL,
meta.name = "meta-analysis", delta.split = FALSE,
center.X = FALSE)
参数----------Arguments----------
参数:theta
A vector of effect size estimates from multiple studies.
规模效应向量估计,从多个研究。
参数:V
The variance/covariance matrix for theta. Typically, this will be block diagonal (to represent any sampling dependence).
theta方差/协方差矩阵。通常情况下,这将是对角块(表示任何采样依赖)。
参数:X
A matrix of covariates for theta. At the very least, this must consist of an intercept term. Other covariates can be included, but there must be more rows than columns in this covariate matrix.
theta协变量矩阵。至少,这必须由截距项。可以包含其他变,但必须有更多的行比协矩阵在此列。
参数:M
(optional) Used when delta.split=TRUE. A block-diagonal matrix describing the hierarchical dependence for the studies (theta). One of two ways to specify this is by using the metahdep.format() function; the other is to use the get.M() function.
(可选)时使用delta.split=TRUE。块对角矩阵,描述层次的研究依赖(theta)。指定两种方式之一是通过使用metahdep.format()函数,另一种是使用get.M()功能。
参数:dep.groups
(optional) Used when delta.split=TRUE. A list of vectors/scalars describing the hierarchical dependence groups for the studies (theta). This is an alternative to passing an M matrix.
(可选)时使用delta.split=TRUE。研究(theta)描述的层次依赖组的矢量/标量列表。这是一个通过M矩阵替代。
参数:meta.name
(optional) A name field for bookkeeping. This can be any character string.
(可选)簿记名外地。这可以是任何字符串。
参数:delta.split
(optional) A logical value specifying whether or not to account for hierarchical dependence (i.e., perform delta-splitting). If TRUE, then the user needs to pass either a dependence matrix M, or a dep.groups list; i.e., one of M or dep.groups is REQUIRED when delta.split=TRUE.
(可选)指定层次依赖与否的帐户(即一个逻辑值,执行Delta分裂)。如果TRUE,那么用户需要通过一个依赖性矩阵M或dep.groups列表;即,M或dep.groups时,需要一个delta.split=TRUE。
参数:center.X
(optional) A logical value specifying whether or not to center the columns of X. If TRUE, then the mean from each column will be subtracted from every element in that column (but not for the intercept). This changes the interpretation of the intercept coefficient estimate from the model fit.
(可选)一个逻辑值,指明是否中心X列。如果TRUE,然后从每列平均将会从每个元素中减去该列中(但不拦截)。这改变截距系数的估计,从模型的拟合解释。
Details
详情----------Details----------
Takes a vector of effect size estimates, a variance/covariance matrix, and a covariate matrix, and fits a random effects linear model meta-analysis, allowing for hierarchical dependence. If delta.split=TRUE, then it performs delta-splitting to account for hierarchical dependence among studies. When a meta-analysis is to be performed for gene expression data (on a per-gene basis), the metahdep() function calls this metahdep.REMA() function for each gene separately.
需要规模效应估计向量,方差/协方差矩阵,和协矩阵,适合线性模型随机效应荟萃分析,使层次的依赖。如果delta.split=TRUE,然后执行分裂Delta占研究之间的层次依赖。当是基因表达数据的每一个基因的基础上进行了一项荟萃分析,metahdep()函数调用这个metahdep.REMA()每个基因分别功能。
值----------Value----------
A list, with the following named components:
一个列表,与下面的命名组件:
参数:beta.hats
A vector of model estimates for the covariates given by X (it may be a scalar, i.e., a vector of length 1)
协变量的模型估计向量X(它可能是一个标量,即一个长度为1的向量)
参数:cov.matrix
The variance/covariance matrix for the beta.hats vector
beta.hats向量的方差/协方差矩阵
参数:beta.hat.p.values
The [two-sided] p-value(s) for the beta.hats estimate(s)
[双面] P-beta.hats估计值(S)(S)
参数:tau2.hat
The estimated between-study hierarchical variance tau-square, using the method of moments approach of DerSimonian and Laird.
估计方差头之间,研究层次平方米,使用方法的时刻DerSimonian和莱尔德方法。
参数:varsigma.hat
(Only estimated when delta.split=TRUE.) The estimated within-group hierarchical covariance.
(仅估计时delta.split=TRUE)。组内分层方差的估计。
参数:Q
The statistic used to test for model homogeneity / model mis-specification
用于测试模式同质化/模型的MIS系统,规范的统计
参数:Q.p.value
The p-value for Q
p值Q
参数:name
An optional name field
可选名称字段
作者(S)----------Author(s)----------
John R. Stevens, Gabriel Nicholas
参考文献----------References----------
Journal of Educational and Behavioral Statistics, 34(1):46-73.
举例----------Examples----------
###[#]
### Example 1: gene expression data[#例1:基因表达数据]
### - this uses one gene from the HGU.prep.list object[## - 这使用从HGU.prep.list对象的一个基因]
# load data and extract components for meta-analysis (for one gene)[数据加载和提取物元分析组件(一个基因)]
data(HGU.prep.list)
gene.data <- HGU.prep.list[[7]]
theta <- gene.data@theta
V <- gene.data@V
X <- gene.data@X
M <- gene.data@M
dep.grps <- list(c(1:2),c(4:6))
gene.name <- gene.data@gene
# fit a regular REMA (no hierarchical dependence)[适合经常磊码(不分层的依赖)]
results <- metahdep.REMA(theta, V, X, meta.name=gene.name)
results
# fit hierarchical dependence model (with delta-splitting), [适应层次的依赖模式(Delta分裂),]
# using two different methods for specifying the dependence structure[使用两种不同的方法指定依赖结构]
results.dsplitM <- metahdep.REMA(theta, V, X, M, delta.split=TRUE,
meta.name=gene.name, center.X=TRUE)
results.dsplitM
results.dsplitd <- metahdep.REMA(theta, V, X, dep.groups=dep.grps,
delta.split=TRUE, meta.name=gene.name, center.X=TRUE)
results.dsplitd
###[#]
### Example 2: glossing data[#例2:粉饰数据]
### - this produces part of Table 6 in the Stevens and Taylor JEBS paper.[## - 这将产生史蒂文斯和泰勒JEBS纸6表中的一部分。]
data(gloss)
dep.groups <- list(c(2,3,4,5),c(10,11,12))
REMA.ds <- metahdep.REMA(gloss.theta, gloss.V, gloss.X, center.X=TRUE,
delta.split=TRUE, dep.groups=dep.groups)
round(cbind(t(REMA.ds$beta.hats), sqrt(diag(REMA.ds$cov.matrix)),
t(REMA.ds$beta.hat.p.values)),4)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|