ClassifierBuild(MCRestimate)
ClassifierBuild()所属R语言包:MCRestimate
Building a classifier as a combination of preprocessing and
建设一个分类和预处理组合
译者:生物统计家园网 机器人LoveR
描述----------Description----------
builds a classifier as a combination of preprocessing and
建立作为一个分类相结合的预处理
用法----------Usage----------
ClassifierBuild(eset,
class.column,
reference.class=NULL,
classification.fun,
variableSel.fun ="identity",
cluster.fun ="identity",
poss.parameters=list(),
cross.inner=10,
rand=123,
information=TRUE,
thePreprocessingMethods=c(variableSel.fun,cluster.fun))
参数----------Arguments----------
参数:eset
an object of class exprSet or exprSetRG
对象类exprSet或exprSetRG
参数:class.column
a number or a character string which indicated the column of the expression set's phenodata containing the class label
这表明,表达集的phenodata,列包含类的标签数字或字符串
参数:reference.class
a character string with the name of one class - if specified the class will form the first class and all the other classes will form the second class
与一类的名称的字符串 - 如果指定的类将成为一流的,和所有其他类别将形成第二类
参数:classification.fun
a character string which names the function that should be used for the classification
字符串命名应使用功能分类
参数:variableSel.fun
character string which names the function that should be used for variable selection
字符串命名变量的选择,应使用功能
参数:cluster.fun
character string which names the function that should be used for clustering the variables
哪些名称应为聚类变量的函数的字符串
参数:thePreprocessingMethods
vector of character with the names of all preprocessing functions- can be used instead of 'variableSel.fun' and 'cluster.fun' - see details
矢量字符的名称的所有功能,可以用来代替“variableSel.fun和cluster.fun预处理 - 查看详细信息
参数:poss.parameters
a list of possible values for the parameter of the classification method
为分类方法的参数的可能值列表
参数:cross.inner
integer - the number of nearly equal sized parts the train set should be divided into
- 整数的数量几乎相等大小的部分列车集应分为
参数:rand
integer - the random number generator will be put in a reproducible state
整数 - 随机数发生器将重现状态
参数:information
information - should classifier specific data be given(depends on the wrapper for the classification method)
信息 - 应分类的具体数据(取决于包装的分类方法)
值----------Value----------
a list with the following arguments:
list以下参数:
参数:classifier.for.matrix
参数:classifier.for.exprSet
参数:parameter
a list consisting of the estimated 'best' parameter for each cross-validation part
每个交叉验证的一部分组成的估计最好的参数列表
参数:class.method
string which names the function used for the classification
字符串命名的分类使用的功能
参数:thePreprocessingMethods
character string - name of the preprocessing functions that have been used
字符串 - 已使用的预处理功能的名称
参数:cross.inner
number of blocks for a the inner cross-validation
数块的内部交叉验证
参数:information
classifier specific data
分类的具体数据
作者(S)----------Author(s)----------
Markus Ruschhaupt <a href="mailto:m.ruschhaupt@dkfz.de">mailto:m.ruschhaupt@dkfz.de</a>
举例----------Examples----------
library(golubEsets)
data(Golub_Train)
class.column <- "ALL.AML"
Preprocessingfunctions <- c("varSel.highest.var")
list.of.poss.parameter <- list(var.numbers = c(250,1000))
classification.funct <- "RF.wrap"
cross.inner <- 5
RF.classifier <- ClassifierBuild(Golub_Train,
class.column,
classification.fun = classification.funct,
thePreprocessingMethods = Preprocessingfunctions,
poss.parameters = list.of.poss.parameter,
cross.inner = cross.inner)
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|