PlotProfiles(maSigPro)
PlotProfiles()所属R语言包:maSigPro
Function for visualization of gene expression profiles
基因表达谱的可视化中的作用
译者:生物统计家园网 机器人LoveR
描述----------Description----------
PlotProfiles displays the expression profiles of a group of genes.
PlotProfiles显示的一组基因的表达谱。
用法----------Usage----------
PlotProfiles(data, cond, main = NULL, cex.xaxis = 0.5, ylim = NULL,
repvect, sub = NULL, color.mode = "rainbow")
参数----------Arguments----------
参数:data
a matrix containing the gene expression data
包含的基因表达数据矩阵
参数:cond
vector for x axis labeling, typically array names
向量X轴的标签,通常数组名
参数:main
plot main title
图主标题
参数:cex.xaxis
graphical parameter maginfication to be used for x axis in plotting functions
X轴使用绘图功能的图形参数maginfication
参数:ylim
index vector indicating experimental replicates
索引向量表示实验复制
参数:repvect
index vector indicating experimental replicates
索引向量表示实验复制
参数:sub
plot subtitle
图字幕
参数:color.mode
color scale for plotting profiles. Can be either "rainblow" or "gray"
绘制剖面的颜色规模。可以要么"rainblow"或"gray"
Details
详情----------Details----------
The repvect argument is used to indicate with vertical lines groups of replicated arrays.
repvect参数是用来表示与垂直线组阵列复制。
值----------Value----------
Plot of experiment-wide gene expression profiles.
实验全基因表达谱的图。
作者(S)----------Author(s)----------
Ana Conesa, aconesa@ivia.es, Maria Jose Nueda, mj.nueda@ua.es
参考文献----------References----------
maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.
参见----------See Also----------
PlotGroups
PlotGroups
举例----------Examples----------
#### GENERATE TIME COURSE DATA[###生成时间的课程资料]
## generate n random gene expression profiles of a data set with [#生成N个随机设置数据基因表达谱]
## one control plus 3 treatments, 3 time points and r replicates per time point.[#一个控制加3个疗程,3个时间点和r每时间点复制。]
tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group[CTL组]
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group[TR1组]
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group[TR2组]
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group[TR3组]
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)
}
tc.dat
}
## create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups[#创建10个基因与CTL,TR2,TR3组之间的轮廓差异]
tc.DATA <- tc.GENE(n = 10,r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
rownames(tc.DATA) <- paste("gene", c(1:10), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
PlotProfiles (tc.DATA, cond = colnames(tc.DATA), main = "Time Course",
repvect = rep(c(1:12), each = 3))
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|