找回密码
 注册
查看: 827|回复: 0

R语言 limma包 MArrayLM-class()函数中文帮助文档(中英文对照)

[复制链接]
发表于 2012-2-25 23:18:32 | 显示全部楼层 |阅读模式
MArrayLM-class(limma)
MArrayLM-class()所属R语言包:limma

                                        Microarray Linear Model Fit - class
                                         芯片线性模型拟合 - 类

                                         译者:生物统计家园网 机器人LoveR

描述----------Description----------

A list-based class for storing the results of fitting gene-wise linear models to a batch of microarrays. Objects are normally created by lmFit.
一个基于列表的类,用于存储一批微阵列基因的分段线性拟合模型结果。 lmFit通常创建对象。


槽/组件----------Slots/Components----------

MArrayLM objects do not contain any slots (apart from .Data) but they should contain the following list components:
MArrayLM对象不包含任何插槽(除了.Data),但他们应该包含下面的列表组件:




coefficients: matrix containing fitted coefficients or contrasts
coefficients:matrix包含拟合系数或对比




stdev.unscaled: matrix containing unscaled standard deviations of the coefficients or contrasts
stdev.unscaled:matrix含非标度系数或对比的标准偏差




sigma: numeric vector containing residual standard deviations for each gene
sigma:numeric残留标准偏差为每个基因向量




df.residual: numeric vector containing residual degrees of freedom for each gene
df.residual:numeric残差自由度,每个基因的向量

Objects may also contain the following optional components:
对象还可以包含以下可选组件:




Amean: numeric vector containing the average log-intensity for each probe over all the arrays in the original linear model fit.
Amean:numeric向量为每个探针的平均log强度比原来的线性模型拟合中的所有阵列。




genes: data.frame containing gene names and annotation
genes:data.frame含有基因名称和注释




design: design matrix of full column rank
design:设计matrix满列秩




contrasts: matrix defining contrasts of coefficients for which results are desired
contrasts:matrix定义系数的对比结果为需要




F: numeric vector giving moderated F-statistics for testing all contrasts equal to zero
F:numeric向量提供用于测试所有放缓F-统计对比等于零




F.p.value: numeric vector giving p-value corresponding to F.stat
F.p.value:numeric向量给予p值对应的F.stat的




s2.prior: numeric value giving empirical Bayes estimated prior value for residual variances
s2.priornumeric价值给予经验Bayes估计剩余差额前值




df.prior: numeric vector giving empirical Bayes estimated degrees of freedom associated with s2.prior for each gene
df.prior:numeric向量提供经验贝叶斯估计自由s2.prior每个基因的关联度




s2.post: numeric vector giving posterior residual variances
s2.post:numeric向量给予后残留的差异




t: matrix containing empirical Bayes t-statistics
t:matrix包含经验Bayes T-统计




var.prior: numeric vector giving empirical Bayes estimated prior variance for each true coefficient
var.prior:numeric向量给予经验Bayes估计每个真正系数事先方差




cov.coefficients: numeric matrix giving the unscaled covariance matrix of the estimable coefficients
cov.coefficients:数字matrix难能可贵的未缩放的协方差矩阵系数




pivot: integer vector giving the order of coefficients in cov.coefficients. Is computed by the QR-decomposition of the design matrix.
pivot:integer向量给cov.coefficients系数的秩序。设计矩阵的QR分解计算。

If there are no weights and no missing values, then the MArrayLM objects returned by lmFit will also contain the QR-decomposition of the design matrix, and any other components returned by lm.fit.
如果没有权重并没有缺失值,然后返回MArrayLM对象lmFit也将包含设计矩阵的QR分解,由lm.fit返回的任何其他组件。


方法----------Methods----------

RGList objects will return dimensions and hence functions such as dim, nrow and ncol are defined.  MArrayLM objects inherit a show method from the virtual class LargeDataObject.
RGList对象将返回尺寸和功能,如dim,nrow和ncol定义。 MArrayLM对象继承虚拟类showLargeDataObject方法。

The functions ebayes and classifyTestsF accept MArrayLM objects as arguments.
职能ebayes和classifyTestsF接受MArrayLM对象作为参数。


作者(S)----------Author(s)----------


Gordon Smyth



参见----------See Also----------

02.Classes gives an overview of all the classes defined by this package.
02.Classes给出了一个概述此包中定义的所有类。

转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。


注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

手机版|小黑屋|生物统计家园 网站价格

GMT+8, 2025-2-5 02:02 , Processed in 0.024631 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表