plotGSEA(HTSanalyzeR)
plotGSEA()所属R语言包:HTSanalyzeR
Plot and save figures of GSEA results for top significant gene sets
图和保存数字GSEA结果的顶端显著基因组
译者:生物统计家园网 机器人LoveR
描述----------Description----------
This is a generic function.
这是一个通用的功能。
When implemented as the S4 method for objects of class GSCA, this function plots figures of the positions of genes of the gene set in the ranked gene list and the location of the enrichment score for top significant gene sets.
当S4的方法实现类的对象GSCA,这个函数图数字在排名基因列表和富集得分的顶部显着的基因集的位置设置该基因的基因的位置。
To use this function for objects of class GSCA:
使用此功能的类对象GSCA:
plotGSEA(object, gscs, ntop=NULL, allSig=FALSE, filepath=".", output= "png", ...)
plotGSEA(对象,GSCS,NTOP = NULL,allSig = FALSE,文件路径=“。”,输出=“PNG”,...)
用法----------Usage----------
plotGSEA(object, ...)
参数----------Arguments----------
参数:object
an object. When this function is implemented as the S4 method of class GSCA, this argument is an object of class GSCA.
一个对象。作为的S4类方法实现此功能时,GSCA,这种说法是一种类GSCA的对象。
参数:...
other arguments. (see below for the arguments supported by the method of class GSCA)
其他参数。 (见下面的类的方法GSCA支持的论据)
Details
详情----------Details----------
To make GSEA plots of top significance using this function, the user can only choose one method: either assign an integer to the argument 'ntop' or set the argument 'allSig' to 'TRUE'. Exceptions will occur if both methods are used, or no method is used. Please also note that the argument 'ntop' is a cutoff for all gene set collections in the argument 'gscs'.
顶端使用此功能的重要意义,使GSEA图,用户可以只选择一种方法:要么指定一个整数参数NTOP“或设置的参数allSig”为“TRUE”。例外,如果使用这两种方法都将发生,或不使用方法。还请注意,参数NTOP是截止参数GSCS“的所有基因组的集合。
We suggest to perform summarize(gsca, what="Result") first to have an idea of how many significant gene sets there are, and then choose to plot them all or just the top ones.
我们建议执行summarize(gsca, what="Result")先有一个想法,有许多显著的基因是如何设置,然后选择绘制他们所有或只是顶级的。
作者(S)----------Author(s)----------
Xin Wang <a href="mailto:xw264@cam.ac.uk">xw264@cam.ac.uk</a>
参见----------See Also----------
viewGSEA, gseaPlots
viewGSEA,gseaPlots
举例----------Examples----------
## Not run: [#无法运行:]
library(org.Dm.eg.db)
library(KEGG.db)
##load data for enrichment analyses[#加载富集分析数据。]
data("KcViab_Data4Enrich")
##select hits[#选择点击]
hits <- names(KcViab_Data4Enrich)[which(abs(KcViab_Data4Enrich) > 2)]
##set up a list of gene set collections[#建立一个基因组的集合列表]
PW_KEGG <- KeggGeneSets(species = "Dm")
gscList <- list(PW_KEGG = PW_KEGG)
##create an object of class 'GSCA'[#创建一个对象类“GSCA]
gsca <- new("GSCA", listOfGeneSetCollections=gscList, geneList =
KcViab_Data4Enrich, hits = hits)
##print summary of gsca[#打印的gsca摘要]
summarize(gsca)
##do preprocessing (KcViab_Data4Enrich has already been preprocessed)[#做预处理(KcViab_Data4Enrich已经被预处理)]
gsca <- preprocess(gsca, species="Dm", initialIDs = "Entrez.gene",
keepMultipleMappings = TRUE, duplicateRemoverMethod = "max",
orderAbsValue = FALSE)
##print summary of gsca again[#打印总结的gsca再次]
summarize(gsca)
##do hypergeometric tests and GSEA[#做超几何测试和GSEA]
gsca <- analyze(gsca, para = list(pValueCutoff = 0.05, pAdjustMethod
= "BH", nPermutations = 1000, minGeneSetSize = 100, exponent = 1))
##print summary of results[#打印结果摘要]
summarize(gsca, what="Result")
##plot all significant gene sets[#绘制的所有重大的基因组。]
plotGSEA(gsca, gscs=c("PW_KEGG"), allSig=TRUE, filepath=".", output=
"pdf", width=8, height=8)
## End(Not run)[#结束(不运行)]
转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。
注:
注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。
注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。
注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。
|